ICLIO Webinar

Expanding Access to Immunotherapy in the Community Setting

Steven Powell, MD Medical Oncologist Sanford Cancer Center - Sioux Falls, SD

Only 5% of cancer patients will ever go on a clinical trial.

85% of these patients get treatment in the community.

Objectives

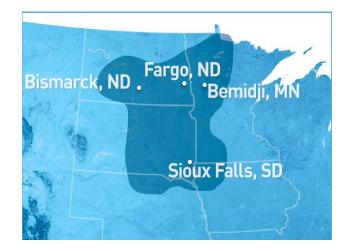
Understand the difficulties of providing innovative cancer therapies in a rural health system.

Explore the utility of virtual tumor boards to facilitate access to novel therapies and trials.

Determine the impact of virtual tumor boards on immunotherapy access in the community.

AN INSTITUTE OF ACCC

Sanford Health


Cancer Program

- >200,000 mile catchment area
- 43 hospitals and nearly 250 clinics in nine states
- 4500+ analytical cancer cases annually

O AN INSTITUTE ICLIO OF ACCC

NCI Community Oncology Research Program (NCORP)

- NCI supported clinical trials
- 2013 494 enrollments
- Basic and translational research program
- Sanford BioBank

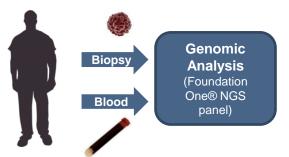
Changes in Cancer Care

- Shift towards precision medicine trials
- Immunotherapy emerging as a treatment option
- More specialized treatments more challenging for rural cancer centers


Confronting These Challenges

- Develop infrastructure to improve specialized testing (i.e., NGS, PD-L1 testing)
- Educate clinicians on novel biomarkers and treatment options
- Determine clinical trial needs for patient population
- If trials not available drug access

Multidisciplinary Tumor Board



The Community Oncology Molecular Tumor Board

- Developed in 2014
- Facilitate molecular testing and trial matching
- Weekly videoconferenced tumor board
 - Rural cancer centers
 - Basic researchers
 - Special guest experts
- Documented in EMR

Sanford GEMMA Study (NCT02416518)

	Sanford (n = 109)	Cleveland Clinic (n = 250)	MD Anderson (n= 2000)
Treatable Target	90.8%	63%	39%
Genomic Matched Treatment	39.4%	10%	41%
Genomic Matched Clinical Trial	16.2%	3%	11%

Primary Goal: Identify Genomic Matched Treatments for Advanced Cancer Patients with Limited Options

Unexpected importance of immunotherapy

Powell SF, et al. *J Clin Oncol.* 34, 2016 (suppl; abstr e18036).

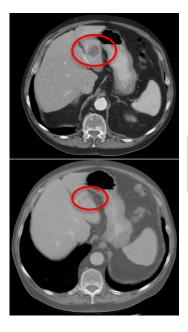
The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring,
A.D. Skora, B.S. Luber, N.S. Azad, D. Laheru, B. Biedrzycki, R.C. Donehower,
A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, S.M. Duffy, R.M. Goldberg,
A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R.H. Hruban, L.D. Wood,
N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish,
J.M. Taube, R.A. Anders, J.R. Eshleman, B. Vogelstein, and L.A. Diaz, Jr.

N Engl J Med 2015; 372:2509-2520, June 25, 2015


Type of Response	Mismatch Repair–Deficient Colorectal Cancer (N = 10)	Mismatch Repair–Proficient Colorectal Cancer (N=18)	Mismatch Repair–Deficient Noncolorectal Cancer (N=7)
Complete response — no. (%)	0	0	1 (14)*
Partial response — no. (%)	4 (40)	0	4 (57)†
Stable disease at week 12 — no. (%)	5 (50)	2 (11)	0
Progressive disease — no. (%)	1 (10)	11 (61)	2 (29)
Could not be evaluated — no. (%)‡	0	5 (28)	0
Objective response rate (95% CI) — %	40 (12–74)	0 (0–19)	71 (29–96)

Microsatellite Instability (MSI)

Novel biomarker for immunotherapy

Ampullary or cholangiocarcinoma	4 (44)
Endometrial	2 (22)
Small bowel	2 (22)
Gastric	1 (11)

Metastatic Lung Adenocarcinoma

Progressed on all standard therapies

> Nivolumab (Opdivo)

>75% reduction in tumor burden

TUMOR TYPE: LUNG ADENOCARCINOMA

Genomic Alterations Identified[†]

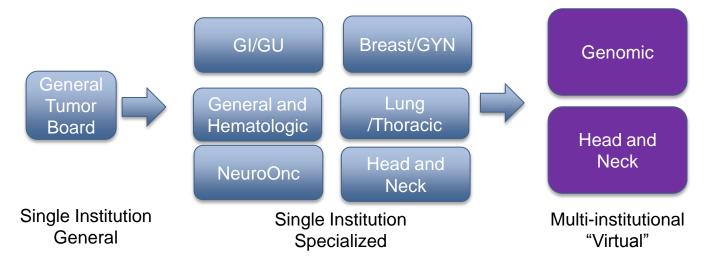
BRCA1 G401* CDK4 amplification – equivocal[®]

PTEN L57S INPP4B splice site 2135+2_2135+2delT MYC amplification TP53 l254F ARID1A S610fs*9 DAXX M369fs*1 FAT1 K316* LRP1B splice site 10531+1G>C, W1962* MAGI2 Y893* MSH2 splice site 2210+1G>T SPTA1 G822*

O AN INSTITUTE ICLIO OF ACCC

Metastatic Cutaneous Squamous Carcinoma

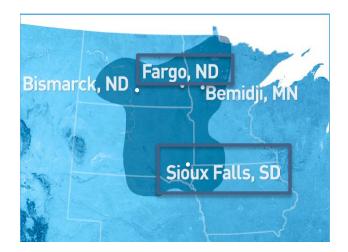
Genomic Alterations Identified[†]


PDGFRA P589S CDKN2A p16INK4a W110* and p14ARF G125R TP53 R342*, S362fs*8 ARID2 |436fs*4 ASXL1 G645fs*58 BLMN515fs*16 CHD4 P30fs*172 NOTCH1 C1207* SMARCA4 M272fs*31 SPTA1 splice site 4981-2A>C

Immunotherapy - Pembrolizumab

Tumor Board Evolution

Head and Neck Cancer and Immunotherapy


Seiwert TY, et al. J Clin Oncol 33, 2015 (suppl; abstr LBA6008)

- PD-1:PD-L1 inhibitors emerging treatment option
- 2015 Access limited to clinical trials
- Most in early phase testing

Reformatting our H&N Tumor Board

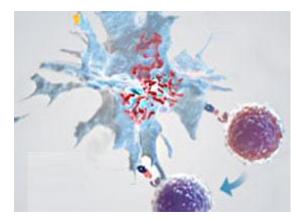
- Communication and coordination between sites
- Identify clinical trial gaps
- Role of immunotherapy in our population

Birth of an Immunotherapy Trials Program

	Keynote 055			Keynote 021
Head and Neck (Squamous Cell Carcinoma)	Keynote 048			ATLANTIC Trial
	CheckMate 358		Lung (Non-Small Cell Carcinoma)	Keynote 189
	Echo 204			Echo 204
Melanoma	EA6134 (NCI)			Checkmate 370
	EA6141 (NCI)			
	Echo 204			Lung-MAP (NCI)
Cervical	CheckMate 358			
Breast	Keynote 119			(NCI)
Merkel Cell Skin	CheckMate 358 Echo 204		Contrin CE junction	Keynote 059
Cancer			Gastric, GE junction, Esophageal	Keynote 180
Non-Hodgkin				Keynote 181
Lymphomas			Color	Echo 204
Ovarian	Echo 204		Colon	Keynote 177
Sarcomas	Alliance A091401		Prostate	Keynote 199

AN INSTITUTE OF ACCC

Industry and Government Partnerships


Investigator-Initiated Immunotherapy Research

- Phase IB Pembrolizumab with Chemoradiotherapy (CRT) for head and neck cancer
- COMPASS <u>Community Oncology use of Molecular</u> Profiling to <u>Personalize the Approach to Specialized</u> cancer treatment at <u>Sanford</u>

Future Investigator-Initiated Studies

Oncolytic Viruses

Translational Research

- Immunotherapy biomarker research
- Novel immunotherapy drug development
- NIH-funded program
 - \$11.7 million Centers of Biomedical Resarch Excellence (CoBRE) award

Program Mission

- <u>Expand access</u> to promising new cancer therapies through <u>clinical trials</u>
- Improve the precision of these novel therapies through genomic and molecular testing
- Lead in providing <u>innovative cancer care</u> in the <u>community</u>
- Develop cancer therapies that will help transform cancer care

Summary

- Unique challenges in accessing novel therapies in rural communities.
- Virtual tumor boards can facilitate provider education, clinical trial matching, and improve patient access.
- Developing our virtual tumor boards has grown immunotherapy trials program.

Steven Powell, MD Steven.Powell@sanfordhealth.org

INSTITUTE FOR CLINICAL IMMUNO-ONCOLOGY

