Payer Directions

Payers and innovation: the challenge of cancer immunotherapy

Michael Kolodziej, MD, FACP

National Medical Director, Oncology Solutions

Aetna

ICLIO 1st Annual National Conference 10.2.15

Philadelphia, Pa.

INSTITUTE FOR CLINICAL IMMUNO-ONCOLOGY

Aetna Values & Oncology Solutions Mission Statement

<u>Aetna Oncology Solutions –</u> Mission Statement:

We give our members access to high-value, personalized cancer care models. We collaborate with oncology teams that deliver best-in-class care by using evidence-based medical guidelines, clinical decision support tools and services that improve the patient's experience, increase effectiveness of care and lower costs. Our value-based approach, powered by data analytics and transparency of policy and payment, allows us to move from a fee-for-service platform to a value-driven system that rewards Oncology practices for quality care throughout the patient's care journey.

Financial Disclosures

- I currently have or have the following relevant financial relationship to disclose:
 - Employee: Aetna

Off-Label Use Disclosures

• I do not intend to discuss off-label uses of products during this activity.

Cancer is the most costly medical item

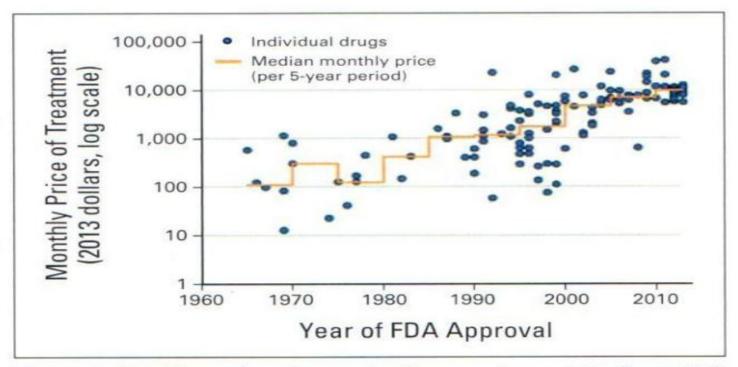
And its cost is increasing at 2 to 3 times the rate of other costs.

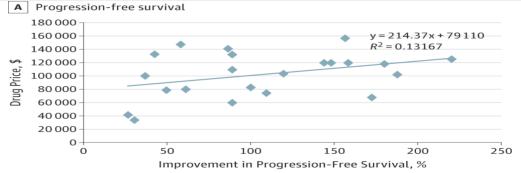
Cancer care is the leading edge of medical cost trend.

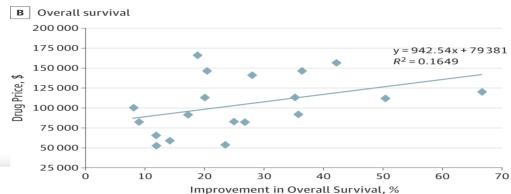
Aetna's top		Medical Rx	30.8%	\$1.5B						
cost drivers		Inpatient	23.3%	\$1.1B						
in cancer care		Radiology	22.4%	\$1.1B						
										Specialist Physician

Source: www.cancer.gov/newscenter/pressreleases/2011/CostCancer2020

Source: 2010 CY Claims; Commercial & Medicare; All Funding; Excludes AGB/SH/SRC




Figure 2. Monthly and median costs of cancer drugs at the time of US Food and Drug Administration (FDA) approval, 1965 to 2013. Adapted.¹⁶



From: Five Years of Cancer Drug Approvals: Innovation, Efficacy, and Costs

JAMA Oncol. Published online April 02, 2015. doi:10.1001/jamaoncol.2015.0373

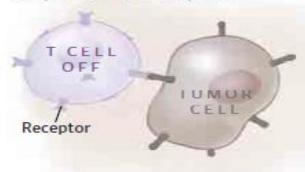
accc-iclio.org

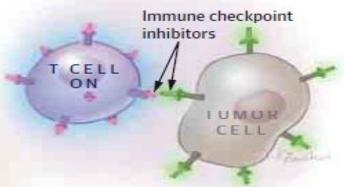
EVIDENCE

cost

Responses to the huge and growing expense of cancer care?

- Pay less
- Manage more (prior auth)
- Narrow networks
- Shift responsibility to member (co-pay)
- Pay for performance (process measures)
- Shift risk (capitation)


Impact has been small Aggravation has been large

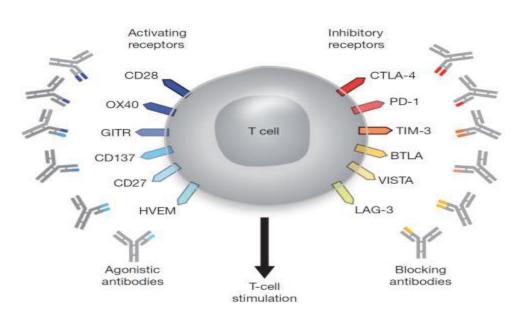


Checkpoint inhibitors remove the "brakes" that tumor cells use to combat T cells

How do immune checkpoint inhibitors work?

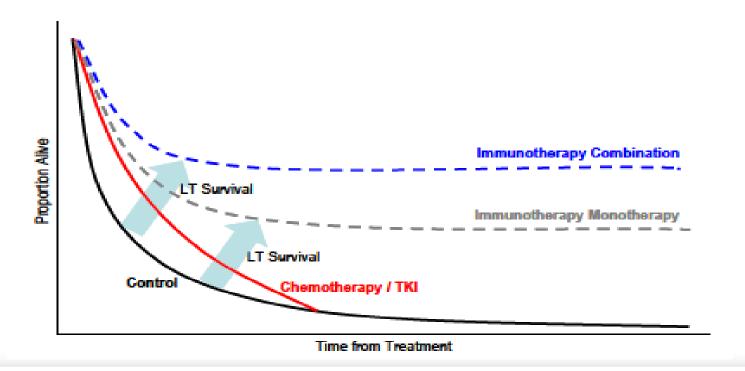
Tumor cells turn off activated T cells when they attach to specific T cell receptors.

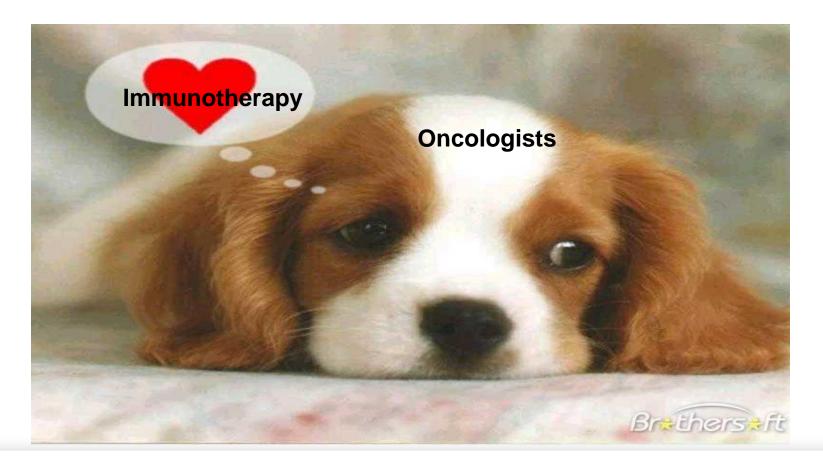
Immune checkpoint inhibitors prevent tumor cells from attaching to T cells so T cells stay activated.


Immune checkpoint inhibitors target either T cells (Y) or on tumor cells (Y).

West Jama Oncology 2015

Immunotherapy: Multiple approaches including the approved checkpoint inhibitors CTLA-4 and PD-1




Mellman Nature 2011

The promise for immunotherapy in oncology

ORIGINAL ARTICLE

Nivolumab in Previously Untreated Melanoma without BRAF Mutation

Caroline Robert, M.D., Ph.D., Georgina V. Long, M.D., Ph.D., Benjamin Brady, M.D., Caroline Dutriaux, M.D., Michele Maio, M.D., Laurent Mortier, M.D., Jessica C. Hassel, M.D., Piotr Rutkowski, M.D., Ph.D., Catriona McNeil, M.D., Ph.D., Ewa Kalinka-Warzocha, M.D., Ph.D., Kerry J. Savage, M.D., Micaela M. Hernberg, M.D., Ph.D., Celeste Lebbé, M.D., Ph.D., Julie Charles, M.D., Ph.D., Catalin Mihalcioiu, M.D., Vanna Chiarion-Sileni, M.D., Cornelia Mauch, M.D., Ph.D., Francesco Cognetti, M.D., Ana Arance, M.D., Ph.D., Henrik Schmidt, M.D., D.M.Sc., Dirk Schadendorf, M.D., Helen Gogas, M.D., Lotta Lundgren-Eriksson, M.D., Christine Horak, Ph.D., Brian Sharkey, Ph.D., Ian M. Waxman, M.D., Victoria Atkinson, M.D., and Paolo A. Ascierto, M.D.

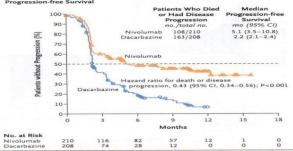
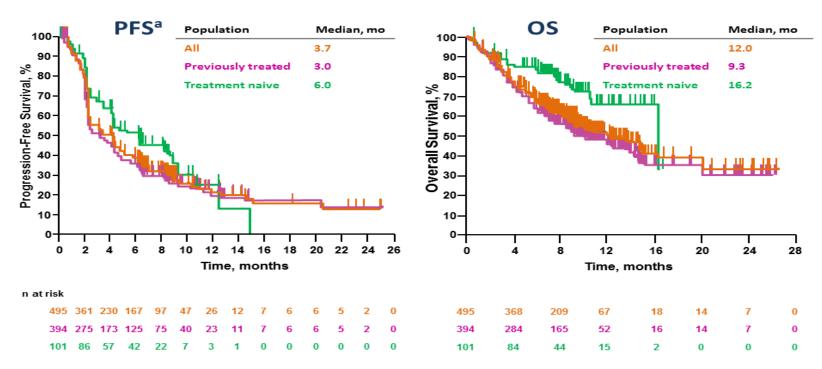


Figure 1. Survival End Points.

Panel A shows the Kaplan—Meier curves for overall survival. The median follow-up for overall survival was 8.9 months in the nivolumab group and 6.8 months in the dacarbazine group. Panel B shows the Kaplan—Meier curves for progression-free survival.

		D
Response	Nivolumab (N=210)	Dacarbazine (N = 208)
Best overall response — no. (%)†		
Complete response	16 (7.6)	2 (1.0)
Partial response	68 (32.4)	27 (13.0)
Stable disease	35 (16.7)	46 (22.1)
Progressive disease	69 (32.9)	101 (48.6)
Could not be determined	22 (10.5)	32 (15.4)
Objective response‡		
No. of patients (% [95% CI])	84 (40.0 [33.3-47.0])	29 (13.9 [9.5–19.4])
Difference — percentage points (95% CI)	26.1 (1)	8.0–34.1)
Estimated odds ratio (95% CI)	4.06 (2	.52-6.54)
P value	<0	0.001
Time to objective response — mo		
Median	2.1	2.1
Range	1.2-7.6	1.8-3.6
Mean	2.6±1.3	2.5±0.7
Duration of response — mo§		
Median (95% CI)	Not reached	6.0 (3.0-not reached)
Range	0.0-12.5	1.1-10.0


ORIGINAL ARTICLE

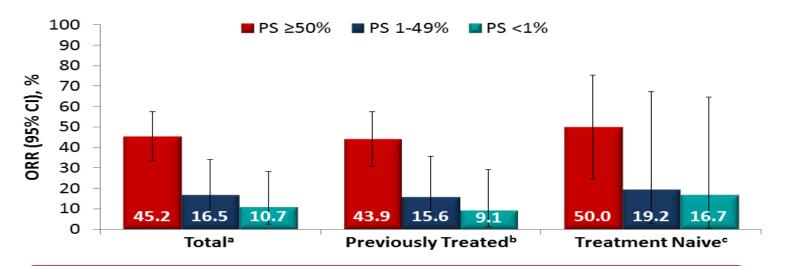
Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer

Edward B. Garon, M.D., Naiyer A. Rizvi, M.D., Rina Hui, M.B., B.S., Natasha Leighl, M.D., Ani S. Balmanoukian, M.D., Joseph Paul Eder, M.D., Amita Patnaik, M.D., Charu Aggarwal, M.D., Matthew Gubens, M.D., Leora Horn, M.D., Enric Carcereny, M.D., Myung-Ju Ahn, M.D., Enriqueta Felip, M.D., Jong-Seok Lee, M.D., Matthew D. Hellmann, M.D., Omid Hamid, M.D., Jonathan W. Goldman, M.D., Jean-Charles Soria, M.D., Marisa Dolled-Filhart, Ph.D., Ruth Z. Rutledge, M.B.A., Jin Zhang, Ph.D., Jared K. Lunceford, Ph.D., Reshma Rangwala, M.D., Gregory M. Lubiniecki, M.D., Charlotte Roach, B.S., Kenneth Emancipator, M.D., and Leena Gandhi, M.D., for the KEYNOTE-001 Investigators*

Longitudinal Outcomes In All Treated Patients

*Assessed per RECIST v1.1 by central review. Analysis cut-off date: August 29, 2014.

Anti-PD1 costs: a thought experiment

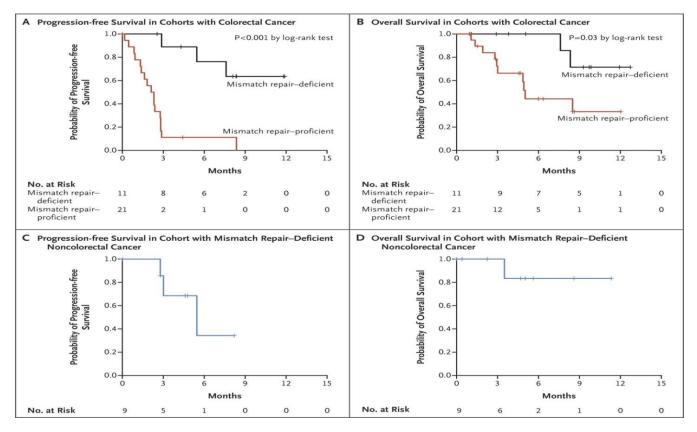

- Number of cases of lung cancer per year in the US is 220,000, and 85% are diagnosed with or develop metastatic disease.
- If anti-PD1 gets 1st line indication, the majority will be candidates for this therapy because it is non-toxic.
- Cost (ASP=150K per year of therapy) = 28 billion dollars
- Presuming 1/3 of patients are cured (this is extremely generous), 18 billion dollars are spent on futile therapy in the absence of a predictive biomarker. If only 15% are cured, then we spend 24 billion dollars on futile therapy

Depth: PD-1/PD-L1 NSCLC registration trials 25+ trials!

Line of Therapy	Opdivo nivolumab	Keytruda pembrolizumab	Atezolizumab	Durvalumab	Avelumab		
Locally	Opdivo	PD-L1+	PD-L1+	Durvalumab			
Advanced	Οραίνο	PD-E14	PD-E14	Durvalumab			
	PD-L1+	PD-L1+	NS PD-L1+	Durvalumab			
1 st Line	PD-L1+	PD-L1+	PD-L1+ NS PD-L1+ Durvalumab				
			NS PD-L1+	Durvalumab			
			Sq PD-L1+	Durvalumab EGFR+			
			Sq PD-L1+	Dui valuillab EGFK+			
2 nd Line	Sq	Sq		Durvalumab EGFR+ /	PD-L1+		
Z nd Line	NS	PD-L1+	PD-L1+	T790+	PD-L1+		
3 rd Line	Sq			Durvalumab			

ORR by PD-L1 Proportion Score: CTA-Evaluable Validation Set Patients With Measurable Disease

When measurable disease is NOT required, the ORR (95% CI) in the PS ≥50% subgroups are: 42.3%, 41.0%, and 47.1% in the total, previously treated, and treatment-naive populations^d


*n = 73, 103, and 28, respectively. bn = 57, 77, and 22, respectively. cn = 16, 26, and 6, respectively. dn = 78, 61, and 17, respectively.

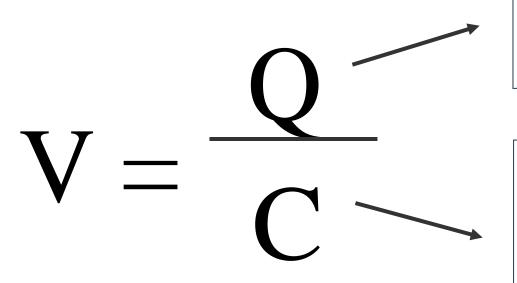
ORR was assessed per RECIST v1.1 by central review in the biomarker-evaluable population (ie, patients with measurable disease per RECIST v1.1 by central review at baseline whose slides were cut within 6 months of staining and for which a proportion score could be assigned).

Analysis cut-off date: August 29, 2014.

Garon AACR 2015 19Apr15

Le DT et al. N Engl J Med 2015;372:2509-2520.

Clinical Data Claims Data from EMR from Payer Population model * Personalized Personalized Model A Model B ANaccc-iclio.org INSTITUTE OF ACCC ICLIO


Breadth: PD-1/PD-L1's registration trials

	Thoracic GI							GU Women's Sarcoma							Sk	kin	Otl	ner	Hem												
	NSCLC	SCCHN	SCLC	Meso	CRC	Pancreatic	Gastric	Esophageal	ЭЭН	Biliary	Renal	Bladder	Prostate	Breast	Ovarian	Cervical	STS	GIST	Melanoma	Merkel Cell	Thyroid	GBM	CML	CLL	AML	NHL	DLBCL	FL	НD	Myeloma	MDS
Nivolumab			*						*																						
Pembrolizumab					*																										
Atezolizumab																															
Duvalumab																															
Avelumab																															
Approved																															
Pre-Registration																															
Ph III																															
planned	*																								Verified July 20. 101						.5

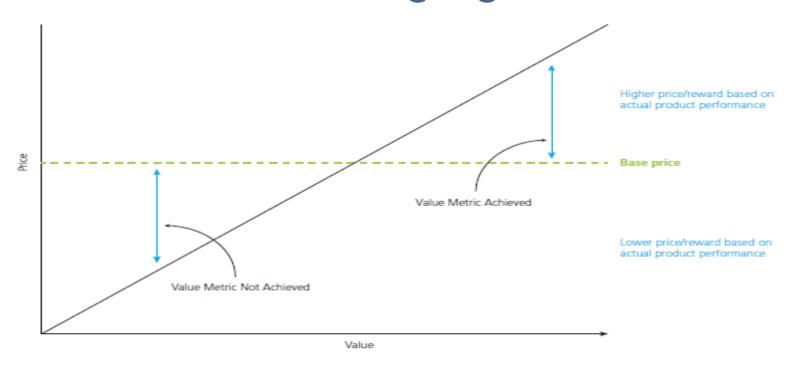
13 cancers

The goal: value driven care

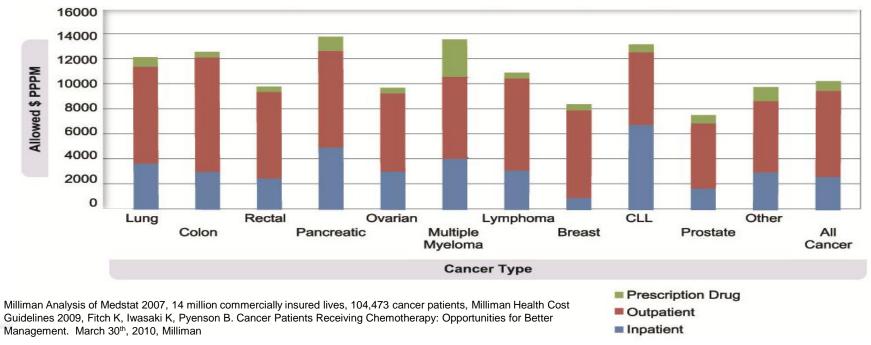
- Guideline-based therapies
- Targeted impact
- Low toxicities
- Improved survival
- Improved QOL


- Best supportive care
- Avoidance hospital days
- Avoidance ED visits
- Lower site-of-service costs
- Reduce medically unnecessary care at EOL

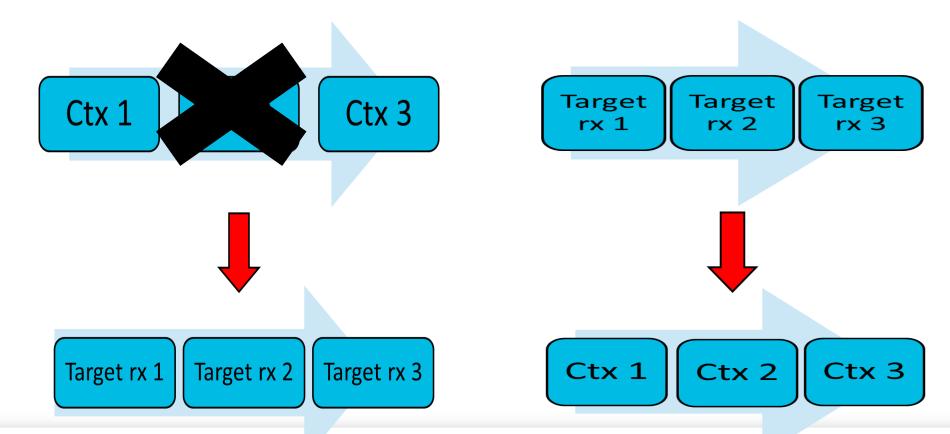
To realize value we must


Increase the size of the tail Figure out who is in the tail

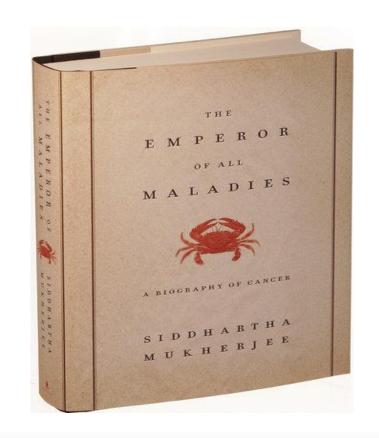
Value-Based Pricing Agreements



Source: U.S. Bureau of Labor Statistics, Division of Industry Employment Projections. Occupational Outlook Handbook, 2010-11 Edition.


AN INSTITUTE OF ACCC

We cannot save enough on other services to offset the drug cost


INSTITUTE OF ACCC

Panel Discussion

