Immunotherapy for High-Risk and Metastatic Melanoma

Timothy M. Kuzel, MD Professor of Medicine and Dermatology Feinberg School of Medicine Northwestern University Chicago

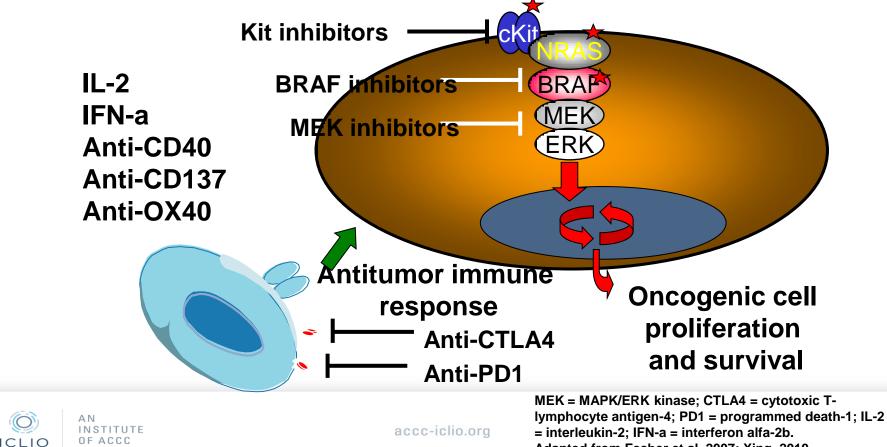
ICLIO 1st Annual National Conference 10.2.15

Philadelphia, Pa.

INSTITUTE FOR CLINICAL IMMUNO-ONCOLOGY

Financial Disclosures

- I currently have or have the following relevant financial relationships to disclose:
 - •Advisory Board: Genentech
 - Consultant: Merck
 - •Grant/Research Support: Bristol-Myers Squibb, Genentech, MedImmune, Merck
 - •Speakers Bureau: Genentech

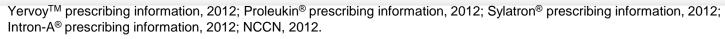


Off-Label Use Disclosures

 I <u>do intend</u> to discuss off-label uses of products during this activity.

Therapeutic Targets in Metastatic Melanoma

Adapted from Fecher et al, 2007; Xing, 2010.

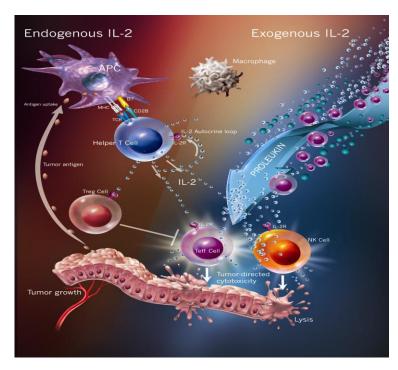

Relevance of Immunotherapy for the Treatment of Melanoma

- FDA-approved immunotherapies for melanoma
 - Adjuvant treatment
 - High-dose IFN-a
 - Pegylated IFN-a
 - Metastatic melanoma
 - High-dose IL-2
 - Ipilimumab

INSTITUTE OF ACCC

CLIO

- Anti PD-1 antibodies (nivolumab or pembrolizumab)
- Immunotherapy has been demonstrated to re-producibly result in long-term responses (not immediate) in (a minority of) patients with metastatic melanoma



Select Ongoing Phase III Adjuvant Therapy Trials in Melanoma

Study	Author or Group	Ν	Data Expected
MM-ADJ-5 (standard HDI vs intermittent HDI)	Mohr	660	2012
MM-ADJ-8 (pegIFN vs LDI)	Garbe	880	2012/13
AVAST-M (bevacizumab vs observation, UK)	Lorigan	1320	2012/13
SWOG/ECOG 0008 (N2, N3) (CVD/IL-2/IFN vs HDI x 1 yr)	SWOG	410	2012
DERMA (MAGE-3 vs observation)	GSK	1300	2015
EORTC 18071 (ipilimumab vs observation)	EORTC	950	2015
ECOG 4697 (GM-CSF ± peptide vaccine vs placebo in HLA-A2 positive or negative patients)	ECOG	800	2015?
ECOG 1609 (ipilimumab vs HDI)	ECOG	1500	2015?
EORTC 18081 (pegIFN vs observation in ulcerated melanoma)	EORTC	1200	2017?
ClinicalTrials.gov			

Interleukin-2: Immunologic Background

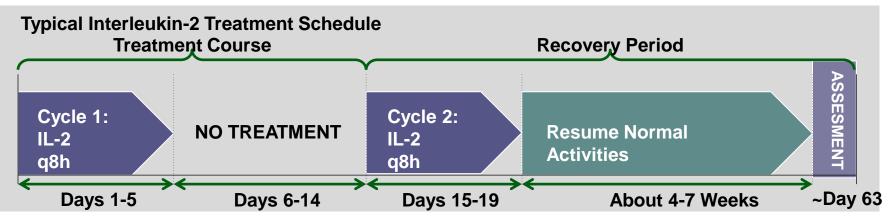
Abbas AK and Lichtman AH. Cellular and Molecular Immunology. 2003

NSTITUTE

OF ACCC

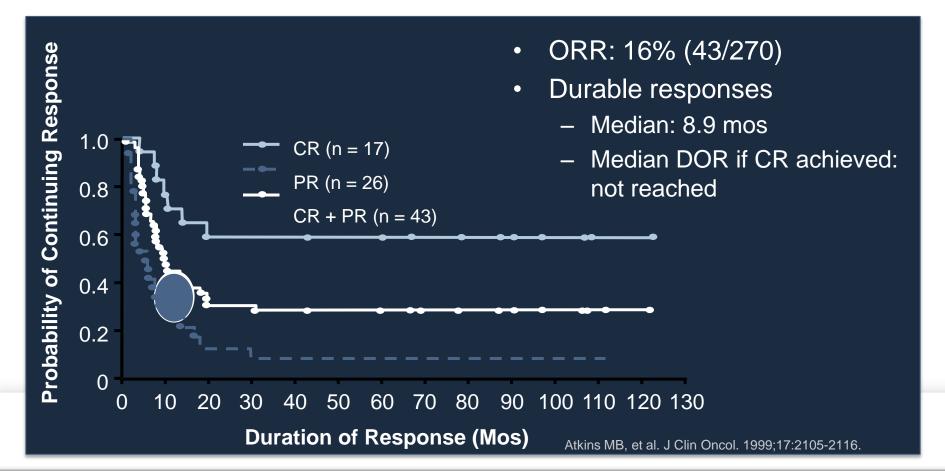
CLIO

- Natural biologic immunomodulatory agent
- Autocrine T-cell growth factor
 - Produced exclusively by activated T cells
 - Predominantly CD-4+ (T-helper) lymphocytes
- Immunomodulatory actions:
 - Proliferation and activation of T cells
 - Immune response amplification
 - Enhanced antibody production by B cells
 - NK cell expansion and activation
- Stimulates T-cell secretion
 - Tumor necrosis factor (TNF)
 - Other cytokines (ie, IL-4, interferon-gamma)
- Stimulates proliferation and activation of:
 - All T cells, including cytotoxic
 T lymphocytes (CTLs) but also Regulatory T cells (Tregs)
 - Natural killer and Lymphokine-activated Killer (LAK) cells


Schedule for HD-Interleukin-2 Therapy

High-dose IL-2 (HD IL-2) has the potential to induce durable complete responses in a small number of patients

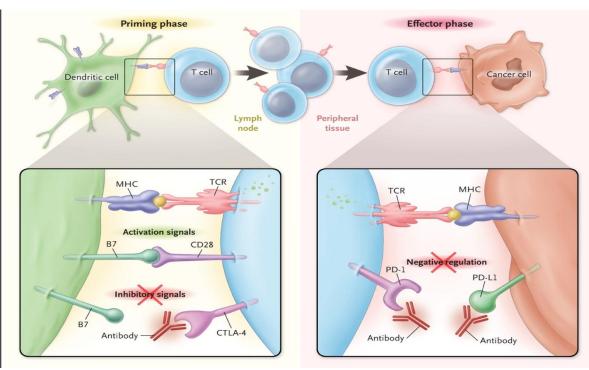
- 600,000 IU/kg (0.037 mg/kg) delivered by 15-min bolus i.v. infusion q8h for 14 doses
- 720,000 IU/kg delivered by 15-min bolus i. v. infusion q8h for 12 doses


AN INSTITUTE

OF ACCC

- Additional courses of treatment are given if there is some shrinkage following the last course.
- Each treatment course should be separated by a rest period of at least 7 weeks from the date of hospital discharge.

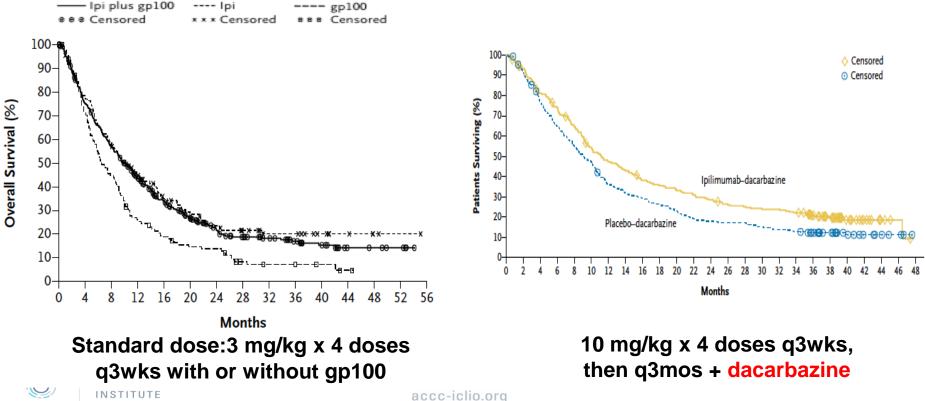
High-Dose IL-2 Therapy



Newer Immunotherapies for Advanced Melanoma: Checkpoint Blockade

AN INSTITUTE OF ACCC

CTLA-4 and PD-1/L1 Checkpoint Blockade for Cancer Treatment


Ribas A. N Engl J Med. 2012;366:2517-2519. Copyright © 2012 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

ICLIO AN INSTITUTE OF ACCC

Improved Survival With Ipilimumab

OF ACCC

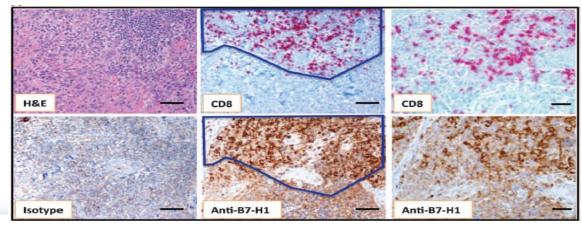
ICLIO

Future Directions in Immunotherapy:

Anti PD-1/PD-L1 antibodies New Combinations

AN INSTITUTE OF ACCC

Induced Expression of PD-L1 (B7-H1) on Melanoma Cells by Infiltrating T Cells


RESEARCH ARTICLE

CANCER

Colocalization of Inflammatory Response with B7-H1 Expression in Human Melanocytic Lesions Supports an Adaptive Resistance Mechanism of Immune Escape

Janis M. Taube,^{1,2}* Robert A. Anders,² Geoffrey D. Young,^{3,4} Haiying Xu,¹ Rajni Sharma,² Tracee L. McMiller,⁴ Shuming Chen,⁴ Alison P. Klein,^{2,5} Drew M. Pardoll,⁵ Suzanne L. Topalian,⁴* Lieping Chen^{1,5,6}*

www.ScienceTranslationalMedicine.org 28 March 2012 Vol 4 Issue 127 127ra37

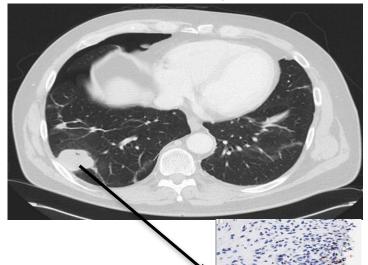
Induction of the B7-H1/PD-1 pathway may represent an adaptive immune resistance mechanism exerted by tumor cells in response to endogenous antitumor activity and may explain how melanomas escape immune destruction despite endogenous antitumor immune responses

Clinical Activity of MK-3475 in a Patient With Metastatic Desmoplastic Melanoma

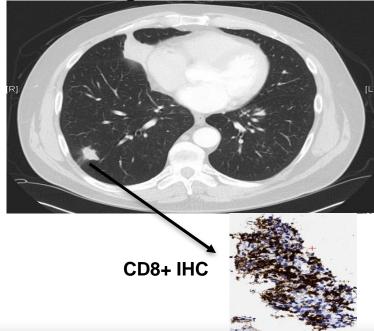
54-yr-old male with desmoplastic melanoma after progressing on ipilimumab

Baseline January 2012

April 2012



Hamid O, et al. N Engl J Med. 2013;369:134-144. Copyright © 2013 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.



CTL Infiltrates in Regressing Metastatic Melanoma Lesion After MK-3475 Treatment

Baseline: February 29, 2012

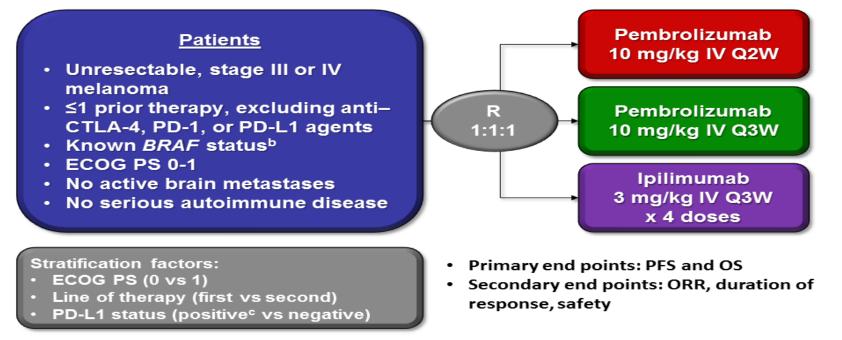
August 20, 2012

CD8+ IHC

Activity of Anti-PD-1/PD-L1 in Patients With Advanced Melanoma

Agent	Pts, n	ORR (at Optimal Dose), %	Grades 3/4 Tx- Related AEs, %	6-Mo PFS, %	12-Mo PFS, %	Median PFS, Mos	1-Yr OS, %	2-Yr OS, %
Nivolumab (anti-PD-1) ^[1-3]	104	31 (41)	22	41	36	3.7	62	43
MK-3475 (anti-PD-1) ^[4,5]	135	38 (52)	13	NA	NA	> 7	81	NA
BMS559 (anti-PD-L1) ^[6]	55	17	5	NA	NA	NA	NA	NA
MPDL3280A (anti-PD-L1) ^[7]	44	29*	36	43	NA	NA	NA	NA

*Includes 4 patients with UM without a response.


1. Topalian SL, et al. J Clin Oncol. 2014;32:1020-1030. 2. Sznol M, et al. ASCO 2013. Abstract 9006.

3. Topalian SL, et al. N Engl J Med. 2012;366:2443-2454. 4. Ribas A, et al. ASCO 2013. Abstract 9009.

5. Hamid O, et al. N Engl J Med. 2013;369:134-144. 6. Brahmer JR, et al. N Eng J Med. 2012. 366:2455-2465. 7. Hamid O, et al. ASCO 2013. Abstract 9010.

KEYNOTE-006 (NCT01866319): International,^a Randomized, Phase III Study

Patients enrolled from 83 sites in 16 countries.

^bPrior anti-BRAF targeted therapy was not required for patients with normal LDH levels and no clinically significant tumor-related symptoms or evidence of rapidly progressing disease.

^cDefined as membranous PD-L1 expression in ≥1% of tumor cells as assessed by IHC using the 22C3 antibody.

Ribas_AACR 2015_19Apr15

AN INSTITUTE OF ACCC

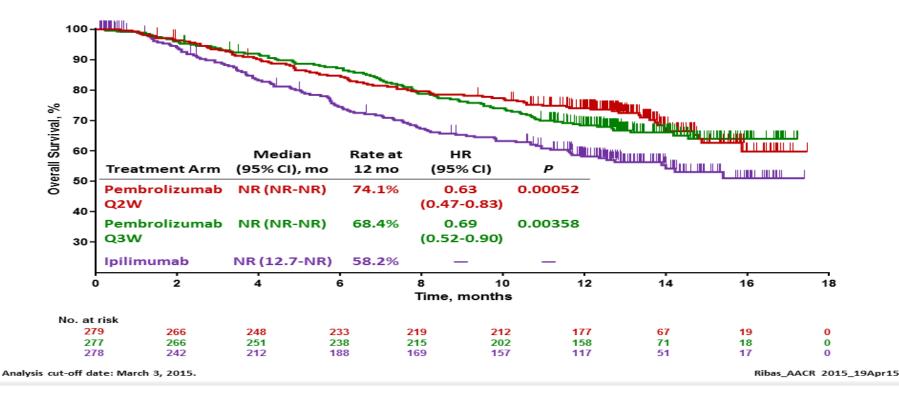
ICLIO

Tumor Response at the First Interim Analysis (RECIST v1.1, Central Review)

	Pembrolizumab Q2W n = 279	Pembrolizumab Q3W n = 277	lpilimumab n = 278
ORR (95% CI)	33.7% (28.2-39.6)	32.9% (27.4-38.7)	11.9% (8.3-16.3)
Best overall response			
Complete response (CR)	5.0%	6.1%	1.4%
Partial response	28.7%	26.7%	10.4%
Stable disease	13.3%	14.1%	16.5%
NonCR/nonPD ^a	4.7%	5.1%	3.6%
Progressive disease (PD)	38.0%	41.2%	48.9%
Not evaluable ^b	7.2%	5.4%	18.3%
No assessment ^c	3.2%	1.4%	0.7%
Ongoing responses	89.4%	96.7%	87.9%
Median duration of response (range), days	251 (42+ to 251)	NR (42+ to 246+)	NR (33+ to 239+)

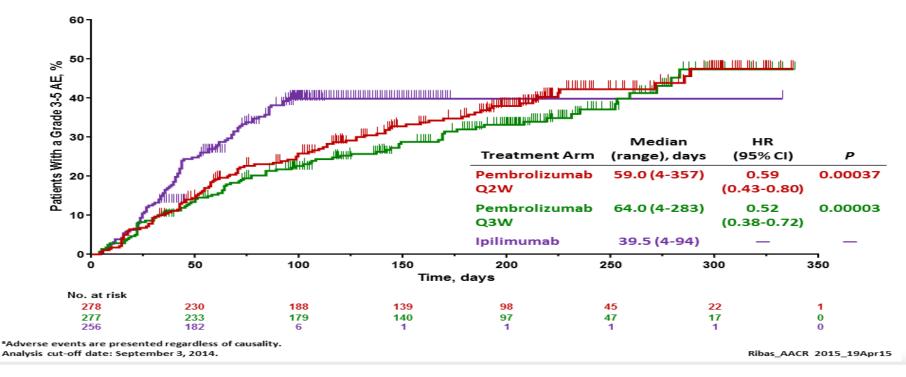
Patients without measurable disease per central review at baseline who did not experience complete response or disease progression.

^bTarget lesion not captured by postbaseline scans or for whom a target lesion was surgically removed.

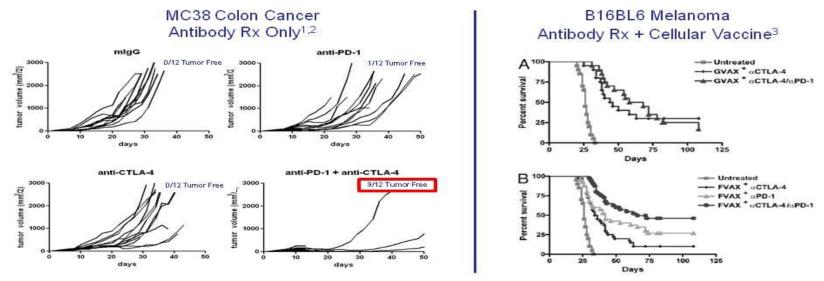

^cNo postbaseline scan performed or were not able to be evaluated.

Analysis cut-off date: September 3, 2014.

Ribas_AACR 2015_19Apr15

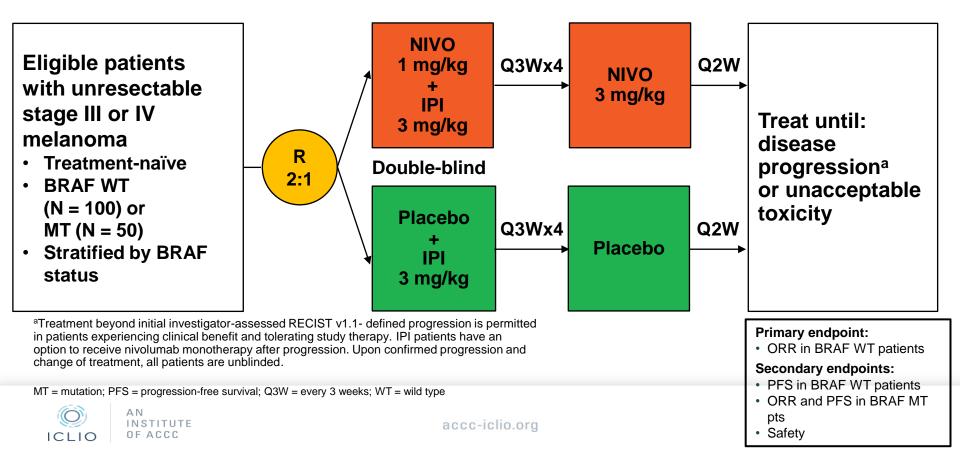


OS at the Second Interim Analysis (IA2)

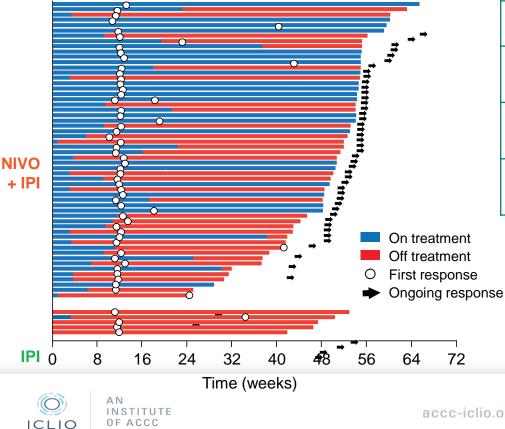


Time to First Grade 3-5 Adverse Event^a at IA1

Antitumor Activity of Anti-CTLA-4 and Anti-PD-1 Antibodies in Murine Tumor Models

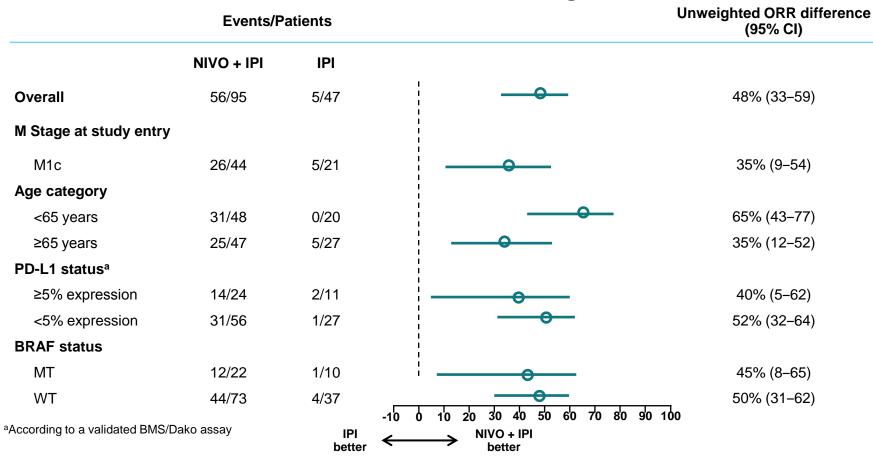


1. Korman et al. J Immunol 2007;178:48.37. 2. Selby et al. ASCO 2013, abs 3061. 3. Curran et al. Proc Natl Acad Sci USA 2010;107:4275-4280.

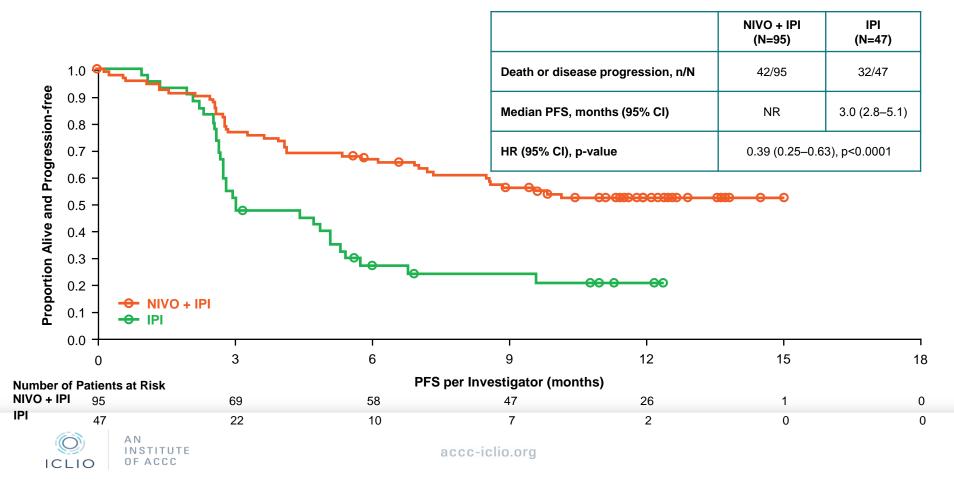

Presented By Jedd Wolchok at 2015 ASCO Annual Meeting

Phase II CA209-069: Study Design

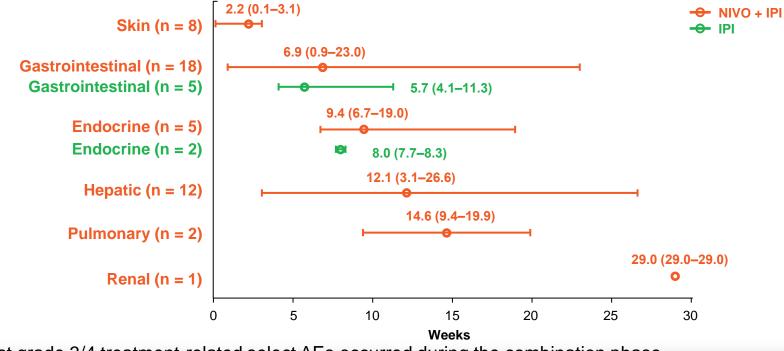
Time to and Durability of Response(All Randomized Responders)



	NIVO + IPI (N = 95)	IPI (N = 47)
Median time to response, months (range) ^a	2.8 (2.3, 9.9)	2.7 (2.5, 7.9)
Median duration of response, months (range) ^a	NR (0–12.1) ^ь	NR (3.5–9.8) ^b
Ongoing response among responders, n (%)ª	46/56 (82)	4/5 (80)


^aMinimum follow-up of 11 months from date of randomization ^bCensored data (response ongoing) NR = not reached

 68% of patients (30/44) who discontinued the NIVO + IPI combination due to drugrelated toxicity experienced a complete or partial response


ORR in Patient Subgroups

PFS in All Randomized Patients

Time to Onset of Grade 3/4 Treatment-related Select AEs

• Most grade 3/4 treatment-related select AEs occurred during the combination phase Circles represent median; bars signify ranges

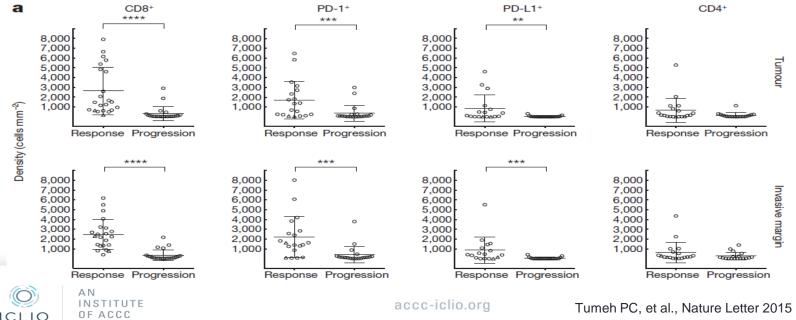
AN INSTITUTE OF ACCC

ICLIO

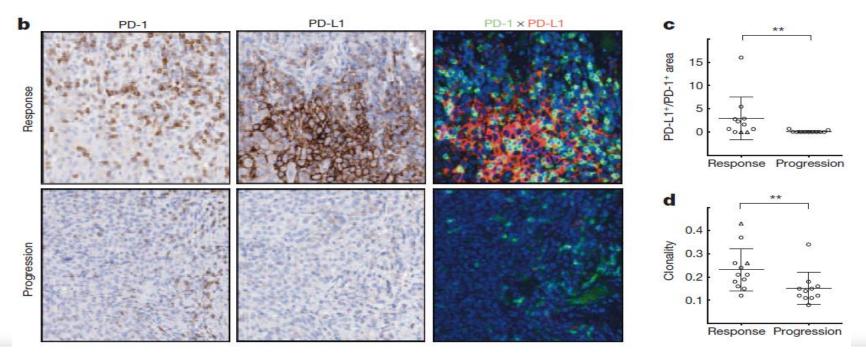
Is PD-L1 a valid Biomarker

Assays are technically difficult and imperfect

 No standard assay/each manufacturer has a
 proprietary antibody
 Variable targets for "positive" (tumor vs immune cells)
 Optimal specimen-paraffin embedded archive vs fresh vs met or primary


- In most studies, most responders are PDL-1 negative
- Threshold for declaring "positive" different in various studies (Nivo 067-27% PDL1+ vs Keynote 006 study-80% PDL-1+)

And yet????????



PD-L1, PD-1, and TIL are associated with response with response to anti-PD-1 therapy

- Tumor biopsies performed before and during pembrolizumab
- Performed quantitative IHC, quantitative multiplex immunofluorescence, and next generation sequencing for T-cell antigen receptors.

PD-1/PD-L1 interface and TCR clonality predict for anti-PD-1 response

accc-iclio.org

AN INSTITUTE

OF ACCC

ICLIO

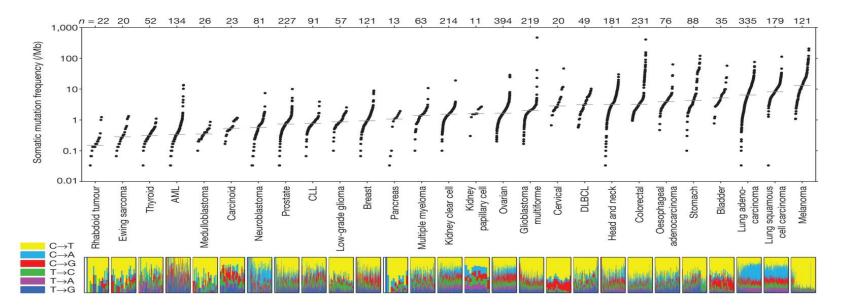
Tumeh PC, et al., Nature Letter 2015

Predictive model validated in separate panel of tumor biopsies for anti-PD-1 response

Extended Data Table 4 | Predictive model and validation

Variable	AUC (95% CI)*	P-value**
Tumour		
CD8+ Density	.91 (0.81, 1.00)	<0.001
PD-1+ Density	.80 (0.67, 0.94)	0.001
PD-L1+ Density	.71 (0.54, 0.88)	0.026
CD4+ Density	.66 (0.48, 0.84)	0.095
Invasive Margin		
CD8+ Density	.94 (0.88, 1.00)	<0.001
PD-1+ Density	.80 (0.66, 0.94)	0.001
PD-L1+ Density	.79 (0.64, 0.95)	0.002
CD4+ Density	.66 (0.48, 0.84)	0.095

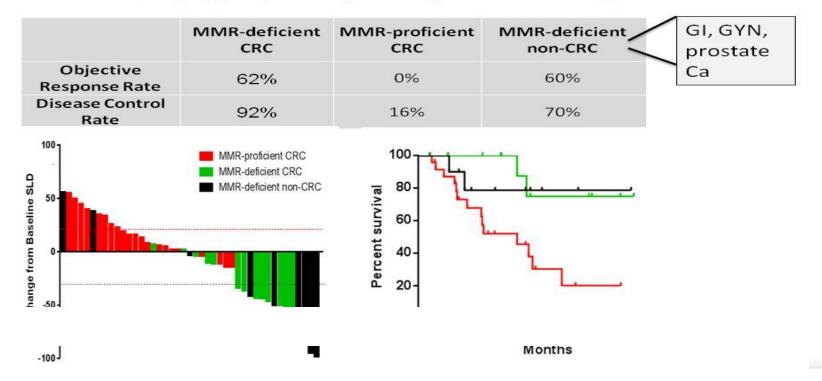
 Accurately predicted 4/5 patients with progression and 9/9 patients with response to anti-PD-1 therapy.


Patient ID	CD8+ Density, Before Tx (Invasive Margin)	Predicted Probability of Response (Logistic Model)	Blinded Prediction	True Clinical Response (RECIST 1.1)
IGR - A	58	0.35	Progression	Progression
IGR - B	159	0.37	Progression	Progression
IGR - C	329	0.40	Progression	Progression
IGR - D	341	0.41	Progression	Progression
IGR - E	2120	0.75	Response	Stable
IGR - F	5466	0.98	Response	Progression
IGR - G	2211	0.76	Response	Response
IGR - H	3810	0.92	Response	Response
IGR - I	4294	0.95	Response	Response
IGR - J	4948	0.97	Response	Response
IGR - K	5565	0.98	Response	Response
IGR - L	6004	0.99	Response	Response
IGR - M	5951	0.99	Response	Complete Response
IGR - N	7230	0.99	Response	Complete Response
IGR - O	6320	0.99	Response	Complete Response

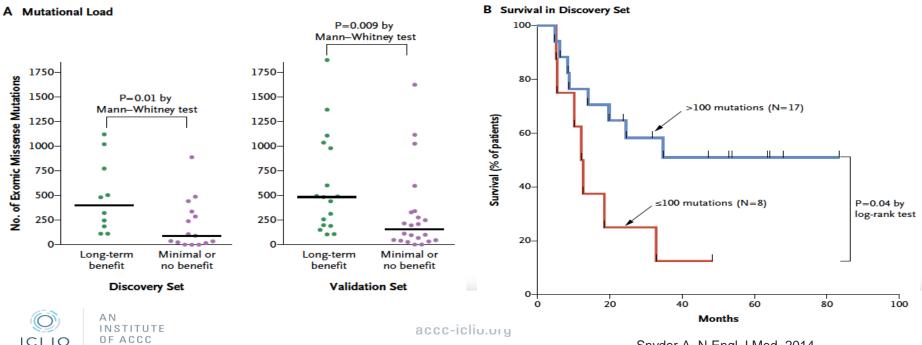
INSTITUTE OF ACCC

A Better Biomarker for Tumor Selection?

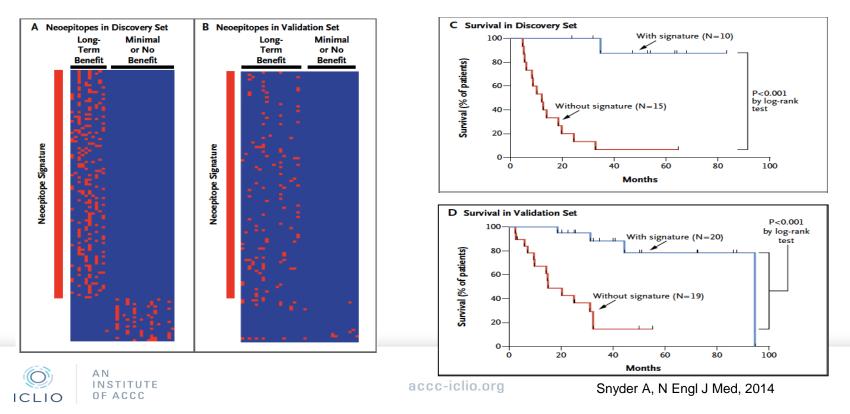
Somatic mutation frequencies observed in exomes from 3,083 tumor–normal pairs.


MS Lawrence et al. Nature 000, 1-5 (2013) doi:10.1038/nature12213

accc-iclio.org


nature

Genetic subsetting predicts response to anti-PD-1 therapy (Le, Diaz, et al., ASCO 2015)



Association of Mutational Load with Clinical Benefit of anti-CTLA therapy in Melanoma Patients

Snyder A, N Engl J Med, 2014

Association of Neoepitopes with Clinical Benefit of anti-CTLA4 therapy in Melanoma Patients

Conclusions

Nivo and Pembro and Nivo+Ipi all superior to Ipi.

These single agents (and possibly the combination should be standard first line therapy

Nivo +Ipi likely superior to Nivo alone (and Pembro?) but at a large financial and tolerability cost

Role for Biomarker of PD-L1 expression to help decide?

More trials needed

Audience Questions

INSTITUTE FOR CLINICAL IMMUNO-ONCOLOGY

