ICLIO National Conference

Immuno-Oncology Indications and Combinations

Igor Puzanov, MD, MSCI, FACP. Director of Early Phase Clinical Trials Program Roswell Park Cancer Institute, Buffalo NY

9.30.16 Philadelphia, Pa.

INSTITUTE FOR CLINICAL IMMUNO-ONCOLOGY

Disclosures

- <u>Consultancy</u>:
 - Amgen
 - Roche
- <u>Research Grant Support to Institution:</u>
 - Nektar
- <u>Clinical Trial Support to Institution:</u>
 - Novartis, MedImmune, Bristol-Myers Squibb, Pharmacyclics, Merck, BBI Therapeutics, Five Prime Therapeutics, Genentech, Corvus Pharmaceuticals, Delcath, Abbvie, Celldex, EMD Serono
 - I will discuss the investigational use of pembrolizumab and TVEC

Objectives

1. Review the current status of immunotherapy

2. Identify determinants of response

3. Discuss strategies to enhance efficacy

AN INSTITUTE OF ACCC

Cancer Immunotherapy: Timeline

ICLIO AN INSTITUTE OF ACCC

FDA approved immunotherapy checkpoint inhibitors include ipilimumab, nivolumab, pembrolizumab, atezolizumab

- Ipilimumab: human, monoclonal antibody that binds to the cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) on T cells.
 - Ipilimumab is indicated for the treatment of unresectable or metastatic melanoma
- <u>Nivolumab/pembrolizumab</u>: Human monoclonal antibodies directed against the programmed death-1 (PD-1) receptor of the T Cell. Atezolizumab: anti PD-L1
 - Nivolimumab has indications for melanoma, RCC, metastatic squamous or non- squamous non-small cell lung cancer (NSCLC), Hodkin's lymphoma.
 - Pembrolizumab is indicated for the treatment of patients with unresectable or metastatic melanoma, NSCLC (PDL-1+), HNSCC
 - Atezolizumab is indicated for the treatment of patients with unresectable or TCC/bladder cancer

Features of Cancer Immunotherapy

Cancer Immunotherapies: Different Approaches

Approach	Examples	Agents/Targets
Vaccines	Peptide, protein, DC, DNA, virus	
Immune Modulaton/Antibodies	Checkpoint inhibitors	anti-CTLA-4 anti-PD-1/PD-L1
Antibodies	Co-stimulatory Activators	anti-OX-40, anti-CD137, anti-GITR
	T cells expanded from tumor infiltrating T cells (TIL)	
Adoptive T cell therapy	T cells expressing tumor antigen specific transgenic TCRs	5
	Chimeric antigen receptor (CAR) adoptive T cells	
Cytokines		IL-2, IFN-alpha, GM-CSF
OncolyticViruses		TVEC
Reversal of Immunosuppression	IDO- inhibitors	Epacadostat
	T-reg depletion	

Cancer Immunotherapies: Different Approaches

Approach	Examples	Agents/Targets
Vaccines	Peptide, protein, DC, DNA, virus	
Immuno Modulator (Antibodios	Checkpoint inhibitors	anti-CTLA-4 anti-PD-1/PD-L1
Immune Wodulatory Antibodies	Co-stimulatory Activators	anti-OX-40, anti-CD137, anti-GITR
	T cells expanded from tumor infiltrating T cells (TIL)	
Adoptive T cell therapy	T cells expressing tumor antigen specific transgenic TCR	S
	Chimeric antigen receptor (CAR) adoptive T cells	
Cytokines		IL-2, IFN-alpha, GM-CSF
Oncolytic Viruses		TVEC
Reversal of Immunosunpression	IDO- inhibitors	Epacadostat
	T-reg depletion	
	accc-iclio.org	

OF ACCC

ICLIO

Immune Modulatory Receptors

accc-iclio.org

AN

OF ACCC

ICLIO

Immune-checkpoint inhibition

ICLIO

OF ACCC

Pooled Overall Survival Analysis of 4846 Melanoma Patients Treated with Ipilimumab

F-S. Hodi, MD – ECCO 2013

ICLIO AN INSTITUTE OF ACCC

Non-Small Cell Lung Cancer

Comparison of Therapeutic Antibodies Blocking PD-1/PDL-1 Interaction

lgG1 wt Examples: Curetech Anti-PD-1

ADCC intact -> Potential to deplete activated T cells and TILs and diminish activity

Blocks PD-1/PD-L2 interaction in lungs -> Potential for autoimmune pneumonitis

[†]at clinically relevant doses

IgG4 hinge mutant BMS Anti-PD-1 Merck Anti-PD-1

40% reduced ADCC[†] → Potential to deplete activated T cells and TILs and diminish activity

Blocks PD-1/PD-L2 interaction in lungs > Potential for autoimmune pneumonitis

IgG1 Engineered Genentech Anti-PD-L1 MedI-4736

No ADCC[†] -> **Decreased potential to deplete** activated T cells and TILs

Leaves PD-1/PD-L2 interaction intact in lungs -> Decreased potential for autoimmune pneumonitis

Blocks PD-L1/B7.1 interaction → Potential for enhanced priming

Courtesy of Dr. Herbst

INSTITUTE OF ACCC

Safety, Activity, and Immune Correlates of Anti–PD-1 Antibody in Cancer

Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, Powderly JD, Carvajal RD, Sosman JA, Atkins MB, Leming PD, Spigel DR, Antonia SJ, Horn L, Drake CG, Pardoll DM, Chen L, Sharfman WH, Anders RA, Taube JM, McMiller TL, Xu H, Korman AJ, Jure-Kunkel M, Agrawal S, McDonald D, Kollia GD, Gupta A, Wigginton JM, Sznol M.

Tumor Type	No. Pts	OR (CR/PR)	SD ≥24 wk	PFS
(dose, mg/kg)		No. Pts (%)	No. Pts (%)	(mos,median)
NSCLC (1-10)	129	22 <mark>(17)</mark>	13 <mark>(10)</mark>	2.3
MEL (0.1-10)	107	33 <mark>(31)</mark>	7 (7)	3.7
RCC (1 or 10)	34	10 <mark>(29)</mark>	9 (27)	7.3

accc-iclio.org

The NEW ENGLAND JOURNAL of MEDICINE

Immune Checkpoint Inhibitors

Anti-tumor activity consistent across the drug class

Agent	Ν	RR N (%)
NSCLC		
Nivolumab ¹	129	22 (17)
MK-3475 ^{2,3}	33 129	7 (21) 25 (19)
MPDL3280A 4	53	12 (23)
BMS 936559 ⁵	49	5 (10)
MEDI-4736 ⁶	6	3/6 (50)

AN INSTITUTE OF ACCC

accc-iclio.org

¹Brahmer et. al. WCLC, 2013, ²Garon et. al. WCLC 2013, ³Ghandi et. al. AACR 2014, ⁴Horn et. al. WCLC 2013, ⁵Brahmer et. al. NEJM 2012, ⁶ Khleif et. al. WCLC 2013

Second line Phase III Trials

Trial	Agent	PD-L1 Status
Checkmate 057	Nivolumab vs. docetaxel (non-squamous)	Not required
Keynote 010	Pembrolizumab vs. docetaxel	PD-L1 positive
OAK	MPDL3280A vs. docetaxel	PD L1 positive
LUNG-MAP	MEDI4736 vs docetaxel Not required	

CheckMate -017, A Phase 3 Study of Opdivo (Nivolumab) Compared to Docetaxel in Patients with Second-Line Squamous Cell Non-small Cell Lung Cancer (BMS press release, January 2015)

First Line Immunotherapy in Advanced NSCLC

KEYNOTE-001: Randomized Dose Comparison

*First 11 patients were randomized to 2 mg/kg or 10 mg/kg Q3W

Objectives

- Evaluate safety, tolerability, and clinical activity of pembrolizumab
- Evaluate correlation between clinical activity of pembrolizumab and PD-L1 expression

ICLIO AN INSTITUTE OF ACCC Balmanoukian SA, et al. Abstract #2

Maximum Percent Change from Baseline in Tumor Size in Evaluable Patients (N=35)

Rizvi NA et al. J Clin Oncol. 32(5s) Abstract 8007, 2014

Time to and Durability of Response

- Median duration of response not reached (median follow-up, 36 weeks)
- 7 of 11 (64%) responders remain on treatment
 - Median duration of treatment: 27.1 weeks (range, 15.0+-48.3+)

- 18 of 21 (86%) responders remain on treatment
- Median duration of treatment: 27.1 weeks (range, 6.1 - 57.1+)

(median follow-up, 36 weeks)

Rizvi NA et al. J Clin Oncol. 32(5s) Abstract 8007, 2014

50

60

First Line Immunotherapy in Advanced NSCLC

	Pembrolizumab	Nivolumab
Number of Patients	45	20
ORR	26%	30%
SD	38%	35%
PFS (median)	27 weeks	36 weeks

Gettinger SN et al. ASCO 2014 #8024

Ongoing Phase III Trials

Trial	Line of Therapy	Agent	PD-L1 Status
CheckMate 026	First	Nivolumab vs. investigator choice chemotherapy	PD-L1 positive 5% cutoff, PFS not met
Keynote 042/42	First	Pembrolizumab vs. investigator choice chemotherapy	PD-L1 positive
ARCTIC	Third Line	MEDI4736 vs. Chemotherapy	Not required
PACIFIC	Locally Advanced	Following concurrent chemo-RT vs. placebo	Not required

Phase III Trials in Development:

- 1) Maintenance therapy in advanced NSCLC
- 2) Adjuvant therapy

AN INSTITUTE

OF ACCC

Pseudo-Progression

iRECIST

May occur in 7-10% of patients

Comparison: RECIST-irRC Criteria*

RECIST

irRC

New, measurable lesions (i.e. ≥5 x 5 mm)	Always represent PD	Incorporated into tumor burden
New, nonmeasurable lesions (i.e. <5 x 5 mm)	Always represent PD	Do not define progression (but preclude irCR)
Non-index lesions	Changes contribute to defining BOR of CR, PR, SD, and PD	Contribute to defining irCR (complete disappearance required)
Complete Response (CR)	Disappearance of all extranodal target lesions. All pathological lymph nodes must have decreased to <10 mm in short axis	Disappearance of all lesions in two consecutive observations not less than 4 weeks apart
Partial Response (PR)	At least a 30% decrease in the SLD of target lesions, taking as reference the baseline sum diameters	≥50% decrease in tumor burden compared with baseline in two observations at least 4 weeks apart
Stable Disease (SD)	Neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD	50% decrease in tumor burden compared with baseline cannot be established nor 25% increase compared with nadir
Progressive Disease (PD)	SLD increased by at least 20% from the smallest value on study (including baseline, if that is the smallest) The SLD must also demonstrate an absolute increase of at least 5 mm (two lesions increasing from 2 mm to 3mm, for example, does not qualify)	At least 25% increase in tumor burden compared with nadir (at any single time point) in two consecutive observations at least 4 weeks apart

*Total Burden=SPD index lesions + SPD new, measurable lesions

Wolchok J et al Clin Can Res 19:7412-7420, 2009

Renal Cell Carcinoma

Second and Third Line for RCC

Randomization

1:1

- Stratification factors
 - MSKCC risk
 - Region
 - Number of prior therapies

Nivolumab 3 mg/kg intravenously every 3 weeks

Everolimus 10 mg orally once daily

Endpoints

- Primary Endpoint: OS
- Secondary Endpoint: ORR, PFS, Aes, QOL, and OS by PD-L1 expression

Motzer RJ et al. N Engl J Med 2015; 373: 19: 1803-13.

ICLIO AN AN INSTITUTE OF ACCC

Nivolumab is Superior for OS

Motzer RJ et al. N Engl J Med 2015; 373: 19: 1803-13.

Durability of Response

Motzer RJ et al. N Engl J Med 2015; 373: 19: 1803-13.

ICLIO AN INSTITUTE OF ACCC

Bladder Cancer

FDA approved the use of atezolizumab

MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer

Thomas Powles¹, Joseph Paul Eder², Gregg D. Fine³, Fadi S. Braiteh⁴, Yohann Loriot⁵, Cristina Cruz⁶, Joaquim Bellmunt⁷, Howard A. Burris⁸, Daniel P. Petrylak², Siew-leng Teng³, Xiaodong Shen³, Zachary Boyd³, Priti S. Hegde³, Daniel S. Chen³ & Nicholas J. Vogelzang⁹

Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial

Jonathan E Rosenberg, Jean Hoffman-Censits, Tom Powles, Michiel S van der Heijden, Arjun V Balar, Andrea Necchi, Nancy Dawson, Peter H O'Donnell, Ani Balmanoukian, Yohann Loriot, Sandy Srinivas, Margitta M Retz, Petros Grivas, Richard W Joseph, Matthew D Galsky, Mark T Fleming, Daniel P Petrylak, Jose Luis Perez-Gracia, Howard A Burris, Daniel Castellano, Christina Canil, Joaquim Bellmunt, Dean Bajorin, Dorothee Nickles, Richard Bourgon, Garrett M Frampton, Na Cui, Sanjeev Mariathasan, Oyewale Abidoye, Gregg D Fine, Robert Dreicer

Imvigor210 Study Design

Co-primary endpoints:

ORR (confirmed) per RECIST v1.1 by central review ORR per immune-modified RECIST by investigator

Key secondary endpoints

DOR, PFS, OS, safety

Key exploratory endpoints

Intratumoral biomarkers

Dreicer R et al. IMvigor210: Atezolizumab in platinum-treated mUC. ASCO2016

Cohort 2-Specific Inclusion Criteria

- Progression during/following platinum (no restrictions on # prior lines of therapy)
- ECOG PS 0-1
- CrCl ≥ 30 mL/min

AN INSTITUTE OF ACCC

Atezolizumab Response Rates (by PD-L1 status)

	IC2/3	IC1/2/3	All ^a	IC1	IC0
	n = 100	n = 207	N = 310	n = 107	n = 103
ORR: confirmed IRF RECIST v1.1 (95% CI)	28%	19%	16%	11%	9%
	(19,38)	(14,25)	(12,20)	(6, 19)	(4, 16)
CR rate: confirmed IRF RECIST v1.1 (95%CI)	15%	9%	7%	4%	2%
	(9,24)	(6, 14)	(4, 10)	(1,9)	(0,7)

- Responses were seen in all IC subgroups, but ORR was enriched with higher PD-L1 status
- Complete responses accounted for nearly half of the observed responses
 - CRs were observed in all PD-L1 subgroups, with the highest rate in IC2/3 patients

^a Includes 46 patients with missing/unevaluable responses. ^b CR + PR + SD \ge 24wk rate per IRF RECIST v1.1. Treated patients had measurable disease at baseline per investigator- assessed RECIST v1.1. Data cutoff: Mar. 14, 2016.

Dreicer R et al. IMvigor210: Atezolizumab in platinum-treated mUC. ASCO2016

Duration of Response to Atezolizumab

- Responses were durable, with mDOR not reached in any PD-L1 subgroup (range, 2.0+ to 13.7+ mo)
- Ongoing responses were seen in 38 of 45 responding patients (84%)
- Median follow-up time: 11.7 mo (range, 0.2+ to 15.2 mo)

Hoffman-Censits et al. GU ASCO 2016. Abstr 355.

accc-iclio.org

ICLIO

Overall Survival with Atezolizumab

- · Longer OS observed in patients with higher PD-L1 IC status
- mPFS (2.1 mo per RECIST v1.1; 2.6 mo per imRECIST) underscores a disconnect between PFS and OS

Dreicer R et al. IMvigor210: Atezolizumab in platinum-treated mUC. ASCO2016

		Media		
		n OS		
Subgroup	(95%			
	CI)			
	IC2/3	IC0/1	All	
Allpts	11.9 mo	6.7 mo	7.9 mo	
(N = 310)	(9.0, 17.9)	(5.4, 8.0)	(6.7,9.3)	

	12-mo OS		
	(95% CI)		
Subgroup	IC2/3	IC0/1	All
Allpts	50%	31%	37%
(N = 310)	(40,60)	(24, 37)	(31, 42)

NE, not estimable.Data cutoff: Mar. 14, 2016.

Median follow-up (range): All Pts: 17.5 mo (0.2 to 21.1+ mo)

Toxicities

Treatment Related Adverse Events

- Fatigue is the most common AE (24%)
- Grade 3-4 AEs are uncommon (6-12.6%)

System	Immune Related Adverse Events
Gastrointestinal	Colitis (Diarrhea, perforation)
Renal	Acute Interstitial Nephritis (Increased serum Creatinine)
Pulmonary	Pneumonitis (dyspnea, cough)
Dermatologic	Dermatitis (Lichenoid/ spongiotic dermatitis, rash), Vitaligo
Hepatic	Hepatitis (elevated LFTs)
Neurologic	Central and Peripheral (Aseptic Meningitis, Guillan-Barre Syndrome, Myasthenia Gravis
Endocrine	Hypophysitis, thyroiditis, adrenal insufficiency
Ocular	Uveitis, Iritis

Risk management

Biomarkers of Response

Identifying Predictor(s) of Response

Responses are higher in PD-L1+ tumors but seen in PD-L1- tumors

AN INSTITUTE

OF ACCC

ICLIO

Lipson, Taube, et al. Semin Oncol. In press.

Identifying Predictor(s) of Response Challenges

PD-L1 IHC Expression By Various Assays				
Tumor	GNE	DAKO 28-8	Merck CC23	5H1
Melanoma	40%	45%	71%	42%
NSCLC	45-50%	49%	45% (25% if ≥50% Staining)	
Renal	20%			24%
Bladder		21%		28%
Head And Neck		31%		46%
Glioblastoma		25%		100%

No validated assay

Variable cut off levels for positivity

Identifying Predictor(s) of Response

Colon

Tumor-Infiltrating Lymphocytes Ovarian (TIL cells)

> The presence of TIL cells at diagnosis correlates with improved clinical outcomes

> > Melanoma

Breast

Zhang L et al. NEJM 348:203-13, 2003 Galon J et al. Science 313: 1960-4, 2006 Azimi F et al. J Clin Oncol 30: 2678-83, 2012 Adams S et al. J Clin Oncol 2014 [Epub ahead of print]

Identifying Predictor(s) of Response

Mutational Burden

- · Median values used to determine high vs low
- No mutations or copy number alterations in CD274 (PDL-1 gene)
- Smoking history did not discriminate for responders
- Molecular smoking signature correlated with mutational burden

AN
INSTITUTE
OF ACCC

Combinations

Combined Immunomodulation

AN

ICLIO

Combined Immunomodulation

Phase I Trial of Ipilumumab and Nivolumab in First Line NSCLC N=49

ORRs: 8/49 (16%); PFS: 14 -16 wks

Treatment related Grade 3 or 4 AE (49%); Discontinuation (35%)

Ipi+Nivo vs. Ipi or Nivo vs. Ipi in Melanoma

Presented by Jedd Wolchok at ASCO 2015 - Wolchok et al. J Clin Oncol 33, 2015 (suppl; abstr LBA1)

[†] One patients who received bour 1-vec and plintratiab. CR, CRu, and PD included.

· Percentage change from baseline: 538

§ Percentage change from baseline: 265

OF ACCC

AN INSTITUTE

ICLIO

Puzanov I, et al. ASCO 2014

T-VEC+pembrolizumab: Best Change in Tumor Burden

Safety analysis set includes all subjects who received at least one dose of talimogene laherparepvec or pembrolizumab *no complete response due to presence of <u>nonmeasurable</u> lesions 17 patients were PD-L1 positive 12 patients with PD-L1 negative 12 patients with PD-L1 indeterminate

T-VEC+pembrolizumab: Change in Tumor Burden Over Time

Time from Start of Combination, weeks

Median tumor follow-up time from first dose: 41 weeks

Top Questions about Immune Checkpoint Inhibitors

- Anti- PD1 vs. Anti-PDL1?
- Ideal schedule/duration of therapy?
- Will/should PDL1 status guide treatment?
- Sequencing/Maintenance Therapy?
- Optimal Combinations?
- Mechanisms of Resistance?

Summary

- Immune checkpoint inhibitors represent a new class of agents that are showing great promise for the treatment of patients with advanced cancer.
- Immune checkpoint inhibitors have a distinct toxicity profile and response assessment that must be taken into account in treating patients with these agents.
- Immune checkpoint inhibitors represent one of several strategies targeting the immune system for therapeutic benefit.

Cancer Immunotherapies: Different Approaches

Approach	Examples	Agents/Targets
Vaccines	Peptide, protein, DC, DNA, virus	
Immune Modulatory Antibodies	Checkpoint inhibitors	anti-CTLA-4 anti-PD-1/PD-L1
	Co-stimulatory Activators	anti-OX-40, anti-CD137, anti-GITR
	T cells expanded from tumor infiltrating T cells (TIL)	
Adoptive T cell therapy	T cells expressing tumor antigen specific transgenic TCRs	
	Chimeric antigen receptor (CAR) adoptive T cells	
Cytokines		IL-2, IFN-alpha, GM-CSF
Oncolytic Viruses		TVEC
Reversal of Immunosuppression	IDO- inhibitors	Epacadostat
	T-reg depletion	

Adoptive Cell Therapy (ACT) with Antigen Specific T-cells

Chimeric Antigen Receptor (CAR) T cells **Targeting CD19 in B Cell Cancers**

AN

ICLIO

OF ACCC

Kochenderfer and Rosenberg, Nat Rev Clin Oncol, 2013

First vs. later generation CARs

ICLIO

CAR-T cell manufacture

CD19.CAR-T cell therapy can be highly effective...

Non-Hodgkin Lymphoma/Chronic Lymphocytic Leukemia

Reference	Center	Ν	Efficacy
Kochenderfer, JCO 2015	NCI	30 (adult/peds)	53% CR 27% PR
Porter, Blood (ASH) 2014	UPenn	15 (adult)	29% CR 29% PR
Savoldo, JCI 2011	BCM/HMH	6 (adult)	33% SD

Acute Lymphoblastic Leukemia

Reference	Center	Ν	Efficacy
Maude, NEJM 2014	UPenn	30 (adult/peds)	90% CR
Davila, SciTM 2014	MSKCC	15 (adult)	88% CR
Lee, Lancet 2015	NCI	21 (peds/AYA)	67% CR (ITT)

Questions?

AN INSTITUTE OF ACCC

Cancer Immunotherapies: Different Approaches

Approach	Examples	Agents/Targets
Vaccines	Peptide, protein, DC, DNA, virus	
Immune Modulatory Antibodies	Checkpoint inhibitors	anti-CTLA-4 anti-PD-1/PD-L1
	Co-stimulatory Activators a	anti-OX-40, anti-CD137, anti-GITR
	T cells expanded from tumor infiltrating T cells (TIL)	
Adoptive T cell therapy	T cells expressing tumor antigen specific transgenic TCRs	
	Chimeric antigen receptor (CAR) adoptive T cells	
Cytokines		IL-2, IFN-alpha, GM-CSF
Oncolytic Viruses		TVEC
Reversal of Immunosuppression	IDO- inhibitors	Epacadostat
	T-reg depletion	

T-VEC: An HSV-1-Derived Oncolytic Immunotherapy Designed to Produce Local and Systemic Effects

T-VEC Responses in Injected And Uninjected Lesions

Cycle 1

Cycle 13

Kaufman et al. ASCO 2014, J Clin Oncol 31, 2013 (suppl; abstr LBA9008)

Primary Overall Survival

Kaufman et al. ASCO 2014, J Clin Oncol 31, 2013 (suppl; abstr LBA9008)

Cancer Immunotherapies: Different Approaches

Approach	Examples	Agents/Targets	
Vaccines	Peptide, protein, DC, DNA, virus		
Immune Modulatory Antibodies	Checkpoint inhibitors	anti-CTLA-4 anti-PD-1/PD-L1	
	Co-stimulatory Activators a	anti-OX-40, anti-CD137, anti-GITR	
	T cells expanded from tumor infiltrating T cells (TIL)		
Adoptive T cell therapy	T cells expressing tumor antigen specific transgenic TCRs		
Chimeric antigen receptor (CAR) adoptive T cells			
Cytokines		IL-2, IFN-alpha, GM-CSF	
Oncolytic Viruses		TVEC	
Reversal of Immunosuppression	IDO- inhibitors	Epacadostat	
	T-reg depletion		

Ipilimumab + sargramostim in Advanced Melanoma

Treatment-Related Grades 3-5 Toxicity by Toxicity Category			
Gastrointestinal ^b	19 (16.1)	32 (26.7)	
Investigations	17 (14.4)	18 (15.0)	
Dermatology or other skin related	13 (11.0)	14 (11.7)	
Metabolic	13 (11.0)	11 (9.2)	
Constitutional symptoms	10 (8.5)	8 (6.7)	
Musculoskeletal	8 (6.8)	8 (6.7)	
Endocrine	4 (3.4)	9 (7.5)	
Neurology	4 (3.4)	0	
Vascular disorders	3 (2.5)	5 (4.2)	
Infection or febrile neutropenia	2 (1.7)	4 (3.3)	
Blood or bone marrow	1 (0.8)	1 (0.8)	
Cardiac disorders	1 (0.8)	1 (0.8)	
Hepatobiliary disorders	1 (0.8)	1 (0.8)	
Immune system disorders	1 (0.8)	5 (4.2)	
Injury, poisoning, and procedure complications	1 (0.8)	0	
Neutrophil count	0	1 (0.8)	
Pulmonary ^b	0	9 (7.5)	
Renal or genitourinary	0	1 (0.8)	
Any toxicity (with worst) ^b	53 (44.9)	70 (58.3)	

Cancer Immunotherapies: Different Approaches

Approach	Examples	Agents/Targets
Vaccines	Peptide, protein, DC, DNA, virus	
Immune Modulatory Antibodies	Checkpoint inhibitors	anti-CTLA-4 anti-PD-1/PD-L1
	Co-stimulatory Activators	anti-OX-40, anti-CD137, anti-GITR
	T cells expanded from tumor infiltrating T cells (TIL)	
Adoptive T cell therapy	T cells expressing tumor antigen specific transgenic TCRs	
	Chimeric antigen receptor (CAR) adoptive T cells	
Cytokines		IL-2, IFN-alpha, GM-CSF
Oncolytic Viruses		TVEC
Reversal of Immunosuppression	IDO- inhibitors	Epacadostat
	T-reg depletion	

Reversal of Immunosuppression

accc-iclio.org

Sheridan Nature Biotechnol. 2015

IDO inhibitor epacadostat + pembrolizumab

RECIST response = 55%, no increase in toxicity from pembrolizumab alone

Potential immunotherapy combinations

- · Future is likely in combinatio
 - Multiple checkpoints
 - (PD-1+CTLA-4, LAG3 etc.)
 - Small Molecules Inhibitors
 - (VEGFi or iNOS modulation+PD-L1)
 - Radiation
 - Chemotherapy
 - (Cyclophosphamide to deplete T_{reg}prior to checkpoint blockade)
 - Costimulatory receptors (OX 40, CD137, GITR, CD40)
 - NovelVaccines
 - Adoptive Cell Therapy

Grosso and Jure-Kunkel, Cancer Immunity, 2013

Questions?

AN INSTITUTE OF ACCC