ICLIO National Conference

Expanding Access to Immunotherapy in the Community Setting

Steven Powell, MD

Medical Oncologist

Sanford Cancer Center - Sioux Falls, SD

9.30.16 Philadelphia, Pa.

Only 5% of cancer patients will ever go on a clinical trial

85% of these patients get treatment in the Community

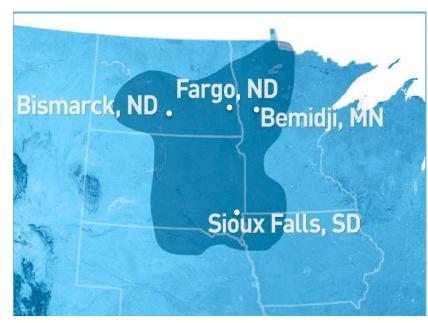
Objectives

Understand the difficulties of providing innovative cancer therapies in a rural health system

Explore the utility of virtual tumor boards to facilitate access to novel therapies and trials

Determine the impact of virtual tumor boards on immunotherapy access in the community

Sanford Health


Cancer Program

- >200,000 mile catchment area
- 43 hospitals and nearly 250 clinics in nine states
- 4500+ analytical cancer cases annually

NCI Community Oncology Research Program (NCORP)

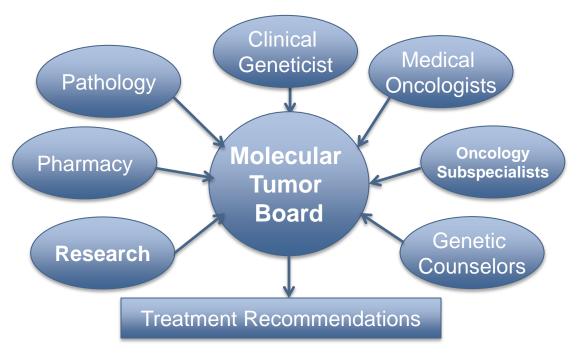
- NCI supported clinical trials
- 2013-494 enrollments
- Basic and translational research program
- Sanford BioBank

Changes in Cancer Care

Shift towards precision medicine trials

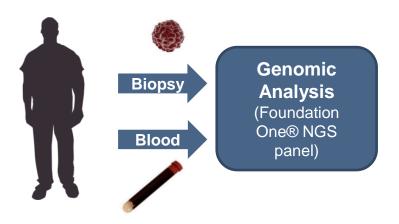
Immunotherapy emerging as a treatment option

 More specialized treatments – more challenging for rural cancer centers


Confronting These Challenges

- Develop infrastructure to improve specialized testing (i.e. NGS, PD-L1 testing)
- Educate clinicians on novel biomarkers and treatment options
- Determine clinical trial needs for patient population
- If trials not available drug access

Multi-disciplinary Tumor Board


The Community Oncology Molecular Tumor Board

- Developed in 2014
- Facilitate molecular testing and trial matching
- Weekly videoconferenced tumor board
 - Rural cancer centers
 - Basic researchers
 - Special guest experts
- Documented in EMR

Sanford GEMMA Study (NCT02416518)

Primary Goal:
Identify Genomic Matched
Treatments for Advanced
Cancer Patients with Limited
Options

	Sanford (n = 109)	Cleveland Clinic (n = 250)	MD Anderson (n= 2000)
Treatable Target	90.8%	63%	39%
Genomic Matched Treatment	39.4%	10%	41%
Genomic Matched Clinical Trial	16.2%	3%	11%

Unexpected importance of immunotherapy

Powell SF, et al. J Clin Oncol 34, 2016 (suppl; abstr e18036)

ORIGINAL ARTICLE

PD-1 Blockade in Tumors with Mismatch-Repair Deficiency

D.T. Le, J.N. Uram, H. Wang, B.R. Bartlett, H. Kemberling, A.D. Eyring, A.D. Skora, B.S. Luber, N.S. Azad, D. Laheru, B. Biedrzycki, R.C. Donehower, A. Zaheer, G.A. Fisher, T.S. Crocenzi, J.J. Lee, S.M. Duffy, R.M. Goldberg, A. de la Chapelle, M. Koshiji, F. Bhaijee, T. Huebner, R.H. Hruban, L.D. Wood, N. Cuka, D.M. Pardoll, N. Papadopoulos, K.W. Kinzler, S. Zhou, T.C. Cornish, J.M. Taube, R.A. Anders, J.R. Eshleman, B. Vogelstein, and L.A. Diaz, Jr.

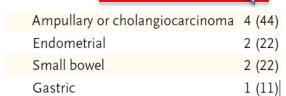

N Engl J Med 2015; 372:2509-2520, June 25, 2015

Table 2. Objective Responses According to RECIST Criteria.				
Type of Response	Mismatch Repair–Deficient Colorectal Cancer (N=10)	Mismatch Repair–Proficient Colorectal Cancer (N=18)	Mismatch Repair–Deficient Noncolorectal Cancer (N=7)	
Complete response — no. (%)	0	0	1 (14)*	
Partial response — no. (%)	4 (40)	0	4 (57)†	
Stable disease at week 12 — no. (%)	5 (50)	2 (11)	0	
Progressive disease — no. (%)	1 (10)	11 (61)	2 (29)	
Could not be evaluated — no. (%);	0	5 (28)	0	
Objective response rate (95% CI) — %	40 (12–74)	0 (0–19)	71 (29–96)	

Microsatellite Instability (MSI)

Novel biomarker for immunotherapy

Metastatic lung adenocarcinoma

Progressed on all standard therapies

Nivolumab (Opdivo)

>75% reduction in tumor burden

TUMOR TYPE: LUNG ADENOCARCINOMA

Genomic Alterations Identified†

BRCA1 G401* CDK4 amplification – equivocal*

PTEN L57S

INPP4B splice site 2135+2 2135+2delT

MYC amplification

TP53 1254F

ARID1A S610fs*9

DAXX M369fs*1

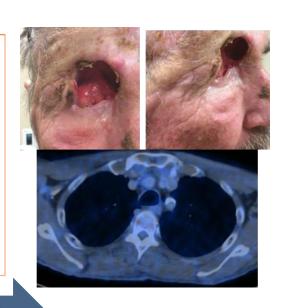
FAT1 K316*

LRP1B splice site 10531+1G>C, W1962*

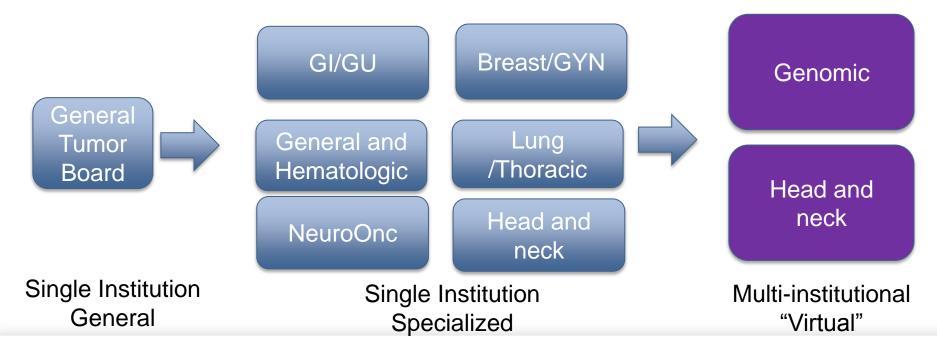
MAGI2 Y893*

MSH2 splice site 2210+1G>T

SPTA1 G822*



Metastatic Cutaneous Squamous Carcinoma


Genomic Alterations Identified†

MLH1 R100*
PDGFRA P589S
CDKN2A p16INK4a W110* and p14ARF G125R
TP53 R342*, S362fs*8
ARID2 I436fs*4
ASXL1 G645fs*58
BLM N515fs*16
CHD4 P30fs*172
NOTCH1 C1207*
SMARCA4 M272fs*31
SPTA1 splice site 4981-2A>C

Immunotherapy - *Pembrolizumab*

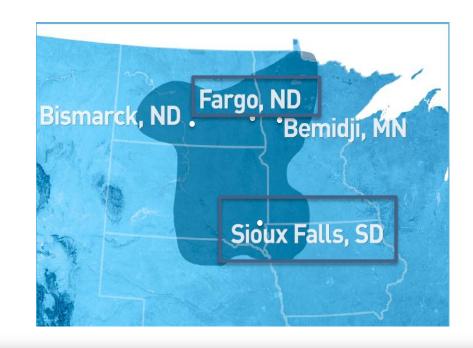
Tumor Board Evolution

Head and Neck Cancer and Immunotherapy

Seiwert TY, et al. J Clin Oncol 33, 2015 (suppl; abstr LBA6008)

 PD-1:PD-L1 inhibitors emerging treatment option

 2015 - Access limited to clinical trials


Most in early phase testing

Reformatting our H&N Tumor Board

Communication and coordination between sites

Identify clinical trial gaps

 Role of immunotherapy in our population

Birth of an Immunotherapy Trials Program

Prostate

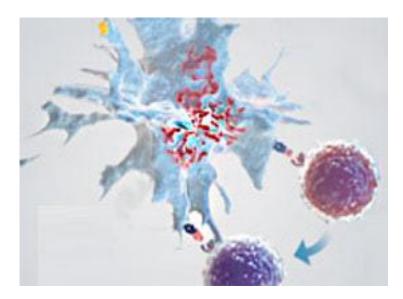
Head and Neck (Squamous Cell Carcinoma)	Keynote 055	
	Keynote 048	
	CheckMate 358	
	Echo 204	
Melanoma	EA6134 (NCI)	
	EA6141 (NCI)	
	Echo 204	
Cervical	CheckMate 358	
Breast	Keynote 119	
Merkel Cell Skin Cancer	CheckMate 358	
Non-Hodgkin Lymphomas	Echo 204	
Ovarian	Echo 204	
Sarcomas	Alliance A091401	

	Lung (Non-Small Cell Carcinoma)	Keynote 021
		ATLANTIC Trial
		Keynote 189
		Echo 204
		Checkmate 370
		Lung-MAP (NCI)
		NCI ALCHEMIST (NCI)
	Gastric, GE junction, Esophageal	Keynote 059
		Keynote 180
		Keynote 181
		Echo 204
		Keynote 177
C		

Keynote 199

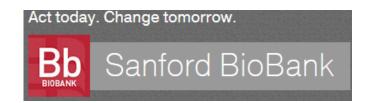
Industry and Government Partnerships

Investigator-Initiated Immunotherapy Research


 Phase IB Pembrolizumab with Chemoradiotherapy (CRT) for head and neck cancer

 COMPASS - Community Oncology use of Molecular Profiling to Personalize the Approach to Specialized cancer treatment at Sanford

Future Investigator-Initiated Studies


Oncolytic Viruses

Translational Research

- Immunotherapy biomarker research
- Novel immunotherapy drug development
- NIH-funded program
 - \$11.7 million Centers of Biomedical Resarch Excellence (CoBRE) award

Program Mission

- Expand access to promising new cancer therapies through clinical trials
- Improve the precision of these novel therapies through genomic and molecular testing
- Lead in providing <u>innovative cancer care</u> in the <u>community</u>
- <u>Develop</u> cancer therapies that will help <u>transform</u> cancer care

Summary

Unique challenges in accessing novel therapies in rural communities

 Virtual tumor boards can facilitate provider education, clinical trial matching, and improve patient access

 Developing our virtual tumor boards has grown immunotherapy trials program

