The Arizona Clinical Oncology Society Fall Conference Saturday November 11th, 2023. Paradise Valley, AZ

Advancing Brain Tumor Treatment: Collaborating Through Clinical Research

Yoshie Umemura, MD

Chief of Neuro-oncology

William and Joan Shapiro Chair of Neuro-Oncology Research Chief Medical Officer, Ivy Brain Tumor Center Barrow Neurological Institute, Phoenix AZ

Disclosures

- I have no stocks, patent rights or employment with any company.
- I serve on the advisory board for Servier Pharmaceuticals.
- I have clinical trial support from Gateway for Cancer Research.

- Clinical challenges in neuro-oncology
- New advancements in neuro-oncology
- Clinical collaborations

- Clinical challenges in neuro-oncology
- New advancements in neuro-oncology
- Clinical collaborations

Glioblastoma

- Most common primary brain tumor in adults
- Approx. 20,000-30,000 cases yearly in the US
- Median OS 14-16 months with standard of care

EJ Mun et al. CCR. Jan 2018. DOI: 10.1158/1078-0432.CCR-17-1117

Advancement in Oncology

Very Brain Tumor Center

Stumbling Blocks in Neuro-Oncology

Blood brain barrier

Intra-tumoral heterogeneity

Blood CSF barrier

Unique CNS microenvironment

Compensatory signaling

54 yo man with MGMT methylated GBM

- Biopsy
- IMRT
- Treatment effect
 - Stopped RT early
 - Stopped TMZ a few days early
- Severe "pressure waves"
- 01/21/18 debulking

54 yo man with MGMT methylated GBM

12/22/18

GBM with increased perfusion

• Patient 1

Patient 2

lacksquare

• Both GBM s/p GTR, RT+TMZ, adj TMZ, increased perfusion

• Patient 1: MGMT promotor umethylated

PD

• Patient 2: MGMT promotor methylated

Bev

- DIFFUSE GLIOSIS, MACROPHAGE INFILTRATION, HYALINIZED VESSELS, AND NECROSIS, CONSISTENT WITH RADIATION INJURY.

RANO 2.0

Neurotherapeutics. 2017 Apr; 14(2): 307–320. Published online 2017 Jan 20. doi: 10.1007/s13311-016-0507-6

PMCID: PMC5398984 | PMID: 28108885

Modified Criteria for Radiographic Response Assessment in Glioblastoma Clinical Trials

Benjamin M. Ellingson,^{⊠1,2,3,5} Patrick Y. Wen,⁴ and Timothy F. Cloughesy^{5,6}

Evaluation of Standard Response Assessment in Neuro-Oncology, Modified Response Assessment in Neuro-Oncology, and Immunotherapy Response Assessment in Neuro-Oncology in Newly Diagnosed and Recurrent Glioblastoma

Check for updates

Gilbert Youssef ⁽¹⁾, MD¹; Rifaquat Rahman ⁽¹⁾, MD²; Camden Bay, PhD³; Wei Wang, PhD^{4,5,6}; Mary Jane Lim-Fat, MD, MSc, FRCPC7; Omar Arnaout, MD8; ...

PURPOSE

The Response Assessment in Neuro-Oncology (RANO) criteria are widely used in high-grade glioma clinical trials. We compared the RANO criteria with updated modifications (modified RANO [mRANO] and immunotherapy RANO [iRANO] criteria) in patients with newly diagnosed glioblastoma (nGBM) and recurrent GBM (rGBM) to evaluate the performance of each set of criteria and inform the development of the planned RANO 2.0 update.

CONCLUSION

RANO and mRANO demonstrated similar correlations between PFS and OS. Confirmation scans were only beneficial in nGBM within 12 weeks of completion of radiotherapy, and there was a trend in favor of the use of postradiation MRI as the baseline scan in nGBM. Evaluation of FLAIR can be omitted. The iRANO criteria did not add significant benefit in patients who received immune checkpoint inhibitors.

ORIGINAL REPORTS Neurooncology

- Clinical challenges in neuro-oncology
- New advancements in neuro-oncology
- Clinical collaborations

Case: Patient KC

September 2018

- Elbowed in the head \rightarrow Progressive headache
- Headache worse with position change
- + Dizziness, nausea & vomiting, blurry vision, photophobia, phonophobia, weakness & paresthesia of UEs

CT head

40 yo woman with L frontal lesion

Pre-operative MRI

Post-operative MRI

Initial Diagnosis: Oligodendroglioma

FINAL REPORT AFTER MOLECULAR RESULTS

I. BRAIN TUMOR: The specimen is received fresh for frozen section and consists of soft pale pink and red tissue aggregating 0.6 x 0.6 x 0.3 cm. One touch prep and one frozen section are submitted and the diagnosis by Dr. Wang and Dr. Kim is "high-

COMMENT: Differential diagnosis includes small cell glioblastoma versus anaplastic oligodendroglioma. Anaplastic oligodendroglioma is favored.

IGH 1/2, 1p/19q, TP53, MGMT are ordered and will be reported in an addendum

grade

II. BF and r pale v

MICF

Anaplastic oligodendroglioma (1p/19q deleted, IDH wild type) is favored based on the histology and molecular studies.

The fine examination findings.

DIAGNOSIS:

I. Brain tumor, craniotomy:

- 1. Malignant glioma.
- 2. Pending IHC and molecular studies. See comment.
- II. Brain tumor, craniotomy:
 - 1. Malignant glioma.
 - 2. Pending IHC and molecular studies. See comment.

TP 53 mutation: Not detected. MGMT Gene Promoter Methylation: Detected. -Percent of MGMT methylation: 12.54%.

COMMENT: Anaplastic oligodendroglioma (1p/19q deleted, IDH wild type) is favored based on the histology and molecular studies.

Oligodendroglioma: Basics

- Infiltrating diffuse glioma
- Approx. 1000 oligodendrogliomas diagnosed per year in US
- 5% of adult gliomas, 0.5% of all primary CNS tumors
- Most has seizure at the time of presentation
- Most are diagnosed between age 25-45

• Anaplastic = WHO grade 3, Median survival 15 years

Oligodendroglioma: PCV vs Temozolomide

U.S. National Library of Medicine

ClinicalTrials.gov

Radiation Therapy With Concomitant and Adjuvant Temozolomide Versus Radiation Therapy With Adjuvant PCV Chemotherapy in Patients With Anaplastic Glioma or Low Grade Glioma

Sponsor:

Alliance for Clinical Trials in Oncology

Collaborators:

National Cancer Institute (NCI)

European Organisation for Research and Treatment Center (EORTC) Canadian Cancer Trials Group

Information provided by (Responsible Party):

Alliance for Clinical Trials in Oncology

ClinicalTrials.gov Identifier: NCT00887146

L Frontal Oligodendroglioma Treatment

4/26/19 5/10/19 5/14/19 5/18/19 5/24/19 6/7/19 6/20/19 7/5//19 8/9/19 8/26/19

WBC	3.2	3.5	1.2	1.9	1.2	1.2	3.1	2.5	1.5	1.2
HB	9.1	9.4	8.9	8.3	9.0	9.9	11.1	10.8	10.3	11.0
PLT	92	18	15	39	46	148	169	154	47	116
	NC					0.6	2.1	1.4	0.8	0.6

Second Opinion: History & Imaging

Post-op MRI

Additional non-enhancing lesion Not included in the RT treatment field

Weekly episodes of inability to speak x 5-10 minutes x 6 months **SEIZURES**

^OIvy Brain Tumor Center

Molecular Focus in WHO Classifications

1979: 1st edition, 1993: 2nd edition, 2000: 3rd edition

Histopathology vs Molecular Diagnoses

WHO 2016 Update: Oligodendroglioma

Review > Acta Neuropathol. 2016 Jun;131(6):803-20.

doi: 10.1007/s00401-016-1545-1. Epub 2016 May 9.

The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary

David N Louis ¹, Arie Perry ², Guido Reifenberger ^{3 4}, Andreas von Deimling ^{4 5}, Dominique Figarella-Branger ⁶, Webster K Cavenee ⁷, Hiroko Ohgaki ⁸, Otmar D Wiestler ⁹, Paul Kleihues ¹⁰, David W Ellison ¹¹

Affiliations + expand

PMID: 27157931 DOI: 10.1007/s00401-016-1545-1

Oligodendrogliomas

The diagnosis of oligodendroglioma and anaplastic oligodendroglioma requires the demonstration of both an IDH gene family mutation and combined whole-arm losses of 1p and 19q (1p/19q codeletion). In the absence of positive mutant R132H IDH1 immunohistochemistry, sequencing of IDH1 codon 132 and IDH2 codon 172 is recommended. In the absence of testing capabilities or in the setting of inconclusive genetic results, a histologically typical oligodendroglioma should be diagnosed as NOS. In the setting of an anaplastic oligodendroglioma with non-diagnostic genetic results, careful evaluation for genetic features of glioblastoma may be undertaken [6]. It is also recognized that tumors of childhood that histologically resemble oligodendroglioma often do not demonstrate IDH gene family mutation and 1p/19g codeletion; until such tumors are better understood at a molecular level, they should be included in the oligodendroglioma, NOS category. However, care should be taken to exclude histological mimics like pilocytic astrocytoma, dysembryoplastic neuroepithelial tumor and clear cell ependymoma.

Initial Diagnosis: Oligodendroglioma??

FINAL REPORT AFTER MOLECULAR RESULTS

I. BRAIN TUMOR: The specimen is received fresh for frozen section and consists of soft pale pink and red tissue aggregating $0.6 \times 0.6 \times 0.3$ cm. One touch prep and one frozen section are submitted and the diagnosis by Dr. Wang and Dr. Kim is "high-grade glioma, favor GBM".

COMMENT: Differential diagnosis includes small cell glioblastoma versus anaplastic oligodendroglioma. Anaplastic oligodendroglioma is favored.

IGH 1/2, 1p/19q, TP53, MGMT are ordered and will be reported in an addendum.

SUPPLEMENTAL A:

-Percent of MGMT methylation: 12.54%.

Anaplastic oligodendroglioma (1p/19q deleted, IDH wild type) is favored based on the histology and molecular studies.

DIAGINUSIS.

II. BP

I. Brain tumor, craniotomy:

- 1. Malignant glioma.
- 2. Pending IHC and m
- II. Brain tumor, craniotor
 - 1. Malignant glioma.
 - 2. Pending IHC and molecular studies. See comment.

CHROMOSOMAL MICROARRAY: NO EVIDENCE OF 1p19q CODELETION 'ioma (1p/19q deleted, IDH plogy and molecular studies.

Second Opinion: Diagnosis Review

GLIOBLASTOMA, IDH-WILD TYPE, WHO GRADE 4

- IDH1 and IDH2 wildtype
- ATRX retained
- MGMT promoter methylated

Glioblastoma, WHO grade 4

- More common in older adults age > 45
- 10 times more common than Grade 2 & 3 oligo combined
- MEDIAN survival 24 months for MGMT methylated

60 Gy

EJ Mun et al. CCR. Jan 2018. DOI: 10.1158/1078-0432.CCR-17-1117

Multifocal Glioblastoma Treatment

10/2023 Stable MRI brain (5+ years from diagnosis)

Radiographic response

9/2020

9/2021

9/2022

- Clinical challenges in neuro-oncology
- New advancements in neuro-oncology
 - Diagnoses
 - Treatments

Target: IDH mutation

THE WALL STREET JOURNAL.

HEALTH

Treatment Breakthrough for an Intractable Brain Cancer

Servier's drug vorasidenib helped glioma patients stave off cancer growth

By Brianna Abbott Follow

Updated June 4, 2023 3:34 pm ET

Vorasidenib in IDH1- or IDH2-Mutant Low-Grade Glioma

Ingo K. Mellinghoff, M.D., Martin J. van den Bent, M.D., Deborah T. Blumenthal, M.D., Mehdi Touat, M.D., Katherine B. Peters, M.D., Jennifer Clarke, M.D., M.P.H., Joe Mendez, M.D., Shlomit Yust-Katz, M.D., Liam Welsh, M.D., Ph.D., Warren P. Mason, M.D., François Ducray, M.D., Yoshie Umemura, M.D., <u>et al.</u>

- Low grade IDH mutated glioma
- > 1 year, < 5 year from surgery
- No prior tumor directed therapy

A brain MRI shows a slow-moving glioma, a type of tumor. PHOTO: DANA-FARBER CANCER

Voracidenib vs Placebo

- N=331 (vorasidenib N=168, placebo N=163)
- PFS 27.7 months vs 11.1 months (HR 0.39, p<0.001)
- Time to next intervention NR vs 17.8 months (HR 0.26, p<0.001)

Expanded Access Program: Voracidenib

Vorasidenib Expanded Access Program

ClinicalTrials.gov ID

NCT05592743

Sponsor ① Servier

Information provided by () Servier (Responsible Party)

Eligibility Criteria

Description

Inclusion Criteria:

- Age \geq 12 years old and weighing at least 40 kg.
- Have IDH-mutant oligodendroglioma or astrocytoma per WHO 2021 criteria, with the IDH1 or IDH2 gene mutation confirmed by tissue-based diagnosis.
- Have at least 1 prior surgery for glioma (including biopsy).
- Is not in immediate need of chemotherapy and/or radiotherapy based on the clinical judgement of the treating oncologist.
- Have adequate bone marrow function.
- Have adequate hepatic function.
- Have adequate renal function.
- Have adequate cardiac function.

Ages Eligible for Study 12 Years and older (Child, Adult, Older Adult) Sexes Eligible for Study All Exclusion Criteria:

- Patient has IDH1-mutant glioma that is predominantly contrastenhancing and the patient is eligible for ivosidenib Patient Assistance Program or able to access ivosidenib through a thirdparty payer.
 - Patients whose disease progresses after treatment with ivosidenib or who are unable to tolerate ivosidenib may be eligible
- Patient is eligible for a clinical trial with vorasidenib. (Note that patients who are enrolled in a Servier-sponsored clinical trial and have completed all requirements of the trial may be eligible if the patient continues to benefit from vorasidenib and does not meet criteria for discontinuation of treatment)
- Patient has a grade 4 tumor and has not received appropriate standard of care or been approved for an exception by a Servierdesignated panel of independent experts.
- Patient has a heart-rate corrected QT interval using Fridericia's formula (QTcF) ≥450 msec or other factors that increase the risk of QT prolongation or arrhythmic events (e.g., heart failure, hypokalemia, family history of long QT interval syndrome). Subjects with bundle branch block and prolonged QTcF may be eligible at the discretion of Servier Pharmaceuticals and the investigator.
- Patient is pregnant or breastfeeding.

IDH Inhibitor: Safusidenib Phase 2 Trial

SAFUSIDENIB (AB-218) FOR IDH1 MUTANT GLIOMA

A Phase 2 randomized open-label trial to evaluate safety and effically of Safusidenib (AB-218) in patients with recurrent or progressive IDH1 mutant Glioma.

LEARN MORE

Trial Eligibility

Status: Recruiting

Visit ClinicalTrials.gov or use NCT identifier NCT05303519 to view inclusion criteria and additional study details.

TRIAL SCREENING >

Patient CB

26 yo woman

- Headache
- Nausea
- Vomiting
- Diplopia

WHO Criteria Change

Diffuse Midline Glioma, H3 K27M-muta

Louis, D.N., Perry, A., Reifenberger, G. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta

Neuropathol 131, 803-820 (2016). https://doi.org/10.1007/s00401-016-1545-1 Brain Tumor Center

WHO classification of tumours of the central nervous system

Diffuse astrocytic an	d oligodendroglial tumo	urs	Neuronal and mixed neuronal-glial tumours					
Diffuse astrocytoma, I	IDH-mutant	9400/3	Dysembryoplastic neuroepithelial tumour	9413/				
Gemistocytic astro	ocytoma, IDH-mutant	9411/3	Gangliocytoma	9492				
Diffuse astrocytoma,	IDH-wildtype	9400/3	Ganglioglioma	9505/				
Diffuse astrocytoma, I	NOS	9400/3	Anaplastic ganglioglioma					
			Dysplastic cerebellar gangliocytoma					
Anaplastic astrocyton	na, IDH-mutant	9401/3	(Lhermitte-Duclos disease)					
Anaplastic astrocyton	na, IDH-wildtype	9401/3	Desmoplastic infantile astrocytoma and					
Anaplastic astrocytoma, NOS		9401/3	ganglioglioma					
			Papillary glioneuronal tumour	9509/				
Glioblastoma, IDH-wil	ldtype	9440/3	Rosette-forming glioneuronal tumour	9509/				
Giant cell glioblas	toma	9441/3	Diffuse leptomeningeal glioneuronal tumour					
Gliosarcoma		9442/3	Central neurocytoma	9506/				
Epithelioid gliobla	stoma	9440/3	Extraventricular neurocytoma	9506/				
Glioblastoma, IDH-mu	utant	9445/3*	Cerebellar liponeurocytoma	9506/				
Glioblastoma, NOS		9440/3	Paraganglioma					
Diffuse midline glioma	a, H3 K27M–mutant	9385/3*	Tumours of the pineal region					
	- 이상님께서 너희 - 가슴 - 가슴		Pineocytoma	9361/				
Oligodendroglioma, II	DH-mutant and		Pineal parenchymal tumour of intermediate					
1p/19q-codeleted		9450/3	differentiation	9362/				
Oligodendroglioma, N	IOS	9450/3	Pineoblastoma					
			Papillary tumour of the pineal region	9395/				
	oglioma, IDH-mutant							
	ited	9451/3	Embryonal tumours					
	oglioma, NOS	9451/3	Medulloblastomas, genetically defined					
			Medulloblastoma, WNT-activated	9475/				
	S	9382/3	Medulloblastoma, SHH-activated and					
	ytoma, NOS	9382/3	TP53-mutant	9476/				
			Medulloblastoma, SHH-activated and					
	urs		TP53-wildtype	9471/				
		9421/1	Medulloblastoma, non-WNT/non-SHH	9477/				
Pilomyxoid astrocy	ytoma	9425/3	Medulloblastoma, group 3					
Subependymal giant	cell astrocytoma	9384/1	Medulloblastoma, group 4					
Pleomorphic xanthoas	strocytoma	9424/3	Medulloblastomas, histologically defined					
Anaplastic pleomorph	nic xanthoastrocytoma	9424/3	Medulloblastoma, classic	9470/				
			Medulloblastoma, desmoplastic/nodular	9471/				
Ependymal tumours			Medulloblastoma with extensive nodularity	9471/				
Subependymoma		9383/1	Medulloblastoma, large cell / anaplastic	9474/				
Myxopapillary ependy	ymoma	9394/1	Medulloblastoma, NOS	9470/				
Ependymoma		9391/3						
Papillary ependymoma		9393/3	Embryonal tumour with multilayered rosettes.					
Clear cell ependymoma		9391/3	C19MC-altered	9478/				
Tanycytic ependy	moma	9391/3	Embryonal tumour with multilavered					
Ependymoma, RELA	fusion-positive	9396/3*	rosettes. NOS	9478				
Anaplastic ependymo	oma	9392/3	Medulloepithelioma	9501/				
			CNS neuroblastoma	9500/				
Other gliomas			CNS ganglioneuroblastoma	9490/				
Chordoid glioma of th	e third ventricle	9444/1	CNS embryonal tumour, NOS	9473				
Angiocentric glioma		9431/1	Atypical teratoid/rhabdoid tumour	9508				
Astroblastoma		9430/3	CNS embryonal tumour with rhabdoid features					
Choroid plexus tumo	ours		Turnours of the cranial and paraspinal nerves					
Choroid plexus papille	oma	9390/0	Schwannoma	9560/				
Atypical choroid plexi	us papilloma	9390/1	Cellular schwannoma	9560/				
Choroid plexus carcin	noma	9390/3	Plexiform schwannoma	9560/				

9560/0

Patient CB

Diagnosis:

A-B. Brain, pineal region tumor, biopsy:

- Diffuse midline glioma, H3K27M-mutant, WHO grade IV

SEQUENCING QC RE	PORT						
Libraries: Tumor and norr	nal OncoSeq exome capture libra	ries and tumor whole trans	criptome capture libraries were analyzed.				
Sample Quality	Sequencing Quality	Library Quality	Sample Identity (SNP Fingerprinting)				
Pass	Pass	Pass	Pass				
POTENTIALLY ACTION	DNABLE/INFORMATIVE	RESULTS					
Mutation class	Gene/Aberration	Potential Therapies/*Clinical Trials (*Contingent on meeting study eligibility criteria)					
Somatic Point Mutations (Total: 7) 2 Mutations/Mb	FGFR1: p.N546K, activating H3F3A: p.K28M (K27M), hotsp ATRX: Splice acceptor of exor Mutations of uncertain significan BAZ2A (p.R691H), CDX2 (p.W7 PRPF6 (p.R590W)	ot n 14 i <u>ce:</u> 7R), PAX1 (p.S148R),	FGFR1: NCT03352427, NCT02465060 H3F3A: NCT03134131, NCT03295396				
Somatic Indels (Total: 1)	NF1: Frameshift deletion, p.S3	340fs, copy neutral LOH	NF1: NCT02465060				
Copy Number Aberrations	Low level of aneuploidy Co-deletion of regions on chro copy loss of 1(p12-p22.3) and 13 (see copy number plot below)						
Gene Fusions	No driver fusion detected						
Outliers: FGF1, ALK, CCND2, GAP43, CHL1 MGMT is expressed at a low level							
	(see expression plots below)						
Germline Variants for Disclosure	No pathogenic variants detected	1					

Tumors with H3K27M mutation

> Oncotarget. 2017 May 12;8(45):79298-79304. doi: 10.18632/oncotarget.17837. eCollection 2017 Oct 3.

A phase 2 study of the first imipridone ONC201, a selective DRD2 antagonist for oncology, administered every three weeks in recurrent glioblastoma

Isabel Arrillaga-Romany ¹, Andrew S Chi ², Joshua E Allen ³, Wolfgang Oster ³, Patrick Y Wen ⁴, Tracy T Batchelor ¹

"One of these patient had a durable response with a secondary glioblastoma possessing a H3.3 K27M mutation, exhibiting regression by 85% in one lesion and 76% in the second lesion"

was observed as a surrogate marker of target engagement, and DRD2 was expressed in all evaluated archival tumor specimens. In summary, ONC201 is well tolerated and may have single agent activity in recurrent glioblastoma patients.

What's ONC201?

- Selective DRD2 antagonist
- Akt/ERK inhibitor
- Inactivates prosurvival signaling
- Activates apoptosis pathway
- Water soluble, penetrates BBB
- PO route

Brain Tumor Center

• Preclinical efficacy in aggressive malignancy

Figure 1.3 Proposed model of ONC201 in tumor cells.

ONC201 for H3K27M mutated gliomas

> J Neurooncol. 2019 Oct;145(1):97-105. doi: 10.1007/s11060-019-03271-3. Epub 2019 Aug 27.

Pediatric and adult H3 K27M-mutant diffuse midline glioma treated with the selective DRD2 antagonist ONC201

Andrew S Chi¹, Rohinton S Tarapore², Matthew D Hall³⁴, Nicole Shonka⁵, Sharon Gardner¹, Yoshie Umemura⁶, Ashley Sumrall⁷, Ziad Khatib⁴, Sabine Mueller⁸, Cassie Kline⁸, Wafik Zaky⁹, Soumen Khatua⁹, Shiao-Pei Weathers⁹, Yazmin Odia³, Toba N Niazi⁴, Doured Daghistani⁴, Irene Cherrick¹⁰, David Korones¹¹, Matthias A Karajannis¹², Xiao-Tang Kong¹³, Jane Minturn¹⁴, Angela Waanders¹⁴, Isabel Arillaga-Romany¹⁵, Tracy Batchelor¹⁵, Patrick Y Wen¹⁶, Krystal Merdinger², Lee Schalop², Martin Stogniew², Joshua E Allen², Wolfgang Oster², Minesh P Mehta¹⁷, 18

Affiliations + expand PMID: 31456142 PMCID: PMC7241441 DOI: 10.1007/s11060-019-03271-3 Free PMC article

Figure 3.

Gadolinium-enhanced MRI of adult recurrent H3 K27M-mutant glioma patient at baseline (left) and one year (right) after initiating ONC201 (625mg PO, weekly). The on-treatment scan was taken 50 weeks after initiation of ONC201 and 22.5 weeks since the last dose of bevacizumab.

Tumors with H3K27M mutation

ONC201 in H3 K27M-mutant Diffuse Glioma Following Radiotherapy (the ACTION Study)

STATUS: ACTIVE

+ Open all - Close all

Description

This is a randomized, double-blind, placebo-controlled, parallel-group, international, Phase 3 study in patients with newly diagnosed H3 K27M-mutant diffuse glioma to assess whether treatment with ONC201 following frontline radiotherapy will extend overall survival and progression-free survival in this population. Eligible participants will have histologically diagnosed H3 K27M-mutant diffuse glioma and have completed standard frontline radiotherapy.

- Clinical challenges in neuro-oncology
- New advancements in neuro-oncology
 - Diagnoses
 - Treatments
 - Clinical trials

Setting the Goals

Preclinical vs. Clinical Research

Ę

'Humanizing' the Animal Model

Tissue-Based Trialing Often Precedes or Coincides with Phase 1/2

Phase 0/Expansion Trial Design

Niraparib plus Radiotherapy in Newly-Diagnosed Glioblastoma (NCT05076513)

- Clinical challenges in neuro-oncology
- New advancements in neuro-oncology
- Clinical collaborations

The web of brain tumor diagnosis

The web of brain tumor treatment

Ivy Brain Tumor Clinical Team

Neurosurgery

- Biopsy, Resection
- Post-operative matters

Radiation Oncology

- Radiation
- Post-radiation matters

Neuro-Oncology

- Chemotherapy •
- MRI follow ups •
- Seizures Goals of Care

Clinical Trials at Ivy Brain Tumor Center

Ē

Clinical Trial		Gliomas					Moningiomo	DM
	Phase	GBM	G4	G3	G2	H3K27M	weningioma	BIVI
Radiotherapy planning using fluciclovine PET		Ν						
Pamiparib in newly diagnosed and recurrent GBM		N/R						
AZD1390 in recurrent and newly diagnosed grade 4 glioma	0/1b	N/R	N/R					
Niraparib in newly diagnosed and recurrent grade 2-4 glioma	0	N/R	N/R	N/R	N/R			
Sonodynamic therapy in recurrent GBM	1/2	R						
Abemaciclib plus LY3214996 in recurrent GBM	0	R						
DSC-MRI for recurrent GBM		R						
Sonodynamic therapy in recurrent HGG		R	R	R				
BDTX-1535 in recurrent HGG with EGFR alterations or fusions		R	R	R				
Superselective intra-arterial cerebral infusion of temsirolimus in recurrent HGG		R	R	R				
Safusidenib (AB-218) in recurrent or progressive IDH1 mutant glioma					R			
ONC201 in newly diagnosed H3 K27M-mutant diffuse glioma						Ν		
Abemaciclib in newly diagnosed grade 3 meningioma	2						N (G3)	
Radiation therapy vs. observation for newly diagnosed meningioma	3						N (G2)	
SMO/AKT/NF2/CDK inhibitors in progressive meningioma	2						R	
Stereotactic radiosurgery in brain metastases	3							N/R
VIvy Brain Tumor Center N=new, R=recurrent / prog	gressive, (G=Grade					$ \rightarrow $	\prec

Thank you

Ivy Brain Tumor Center:

602-406-8605

Info@ivybraintumorcenter.org www.ivybraintumorcenter.org

Questions: Yoshie.Umemura@IvyBrainTumorCenter.Org

Barrow Neuro-Oncology Clinic

602-406-2800