ctDNA in medical oncology: Clinical and Research Applications

Bruna Pellini, MD

Assistant Member, Department of Thoracic Oncology Moffitt Cancer Center and Research Institute Assistant Professor, Department of Oncologic Sciences Morsani College of Medicine, University of South Florida

Disclosures:

- Research support: Bristol Myers Squibb Foundation/the Robert A. Winn Diversity in Clinical Trials Awards Program (institution), George Edgecomb Society (institution), NIH/NCI 1R21CA259215-01A1 (institution), Bristol Myers Squibb (institution)
- Advisory Board/Consultant: : AstraZeneca, Guardant Health, Regeneron, Illumina, Foundation Medicine, AH Merus, BMS
- Speaker Honoraria: MJH Life Science, Merck, Foundation Medicine, BioAscend, PlaytoKnow AG, Grupo Pardini, GBOT

Outline

- ctDNA definition & sources of ctDNA
- ctDNA genotyping
- Tumor-informed vs. tumor-naïve assays
- ctDNA applications in oncology:
 - o Molecular profiling
 - o Treatment Monitoring
 - o Minimal residual disease (MRD) detection

Tumor-derived fragments of nucleic acids identified in the blood are called circulating tumor DNA (ctDNA)

4

Outline

- ctDNA definition & sources of ctDNA
- ctDNA genotyping
- Tumor-informed vs. tumor-naïve assays
- ctDNA applications in oncology:
 - o Molecular profiling
 - o Treatment Monitoring
 - o Minimal residual disease (MRD) detection

Plasma genotyping

Test	Limit of detection (% ctDNA)	Advantages	Limitations		
Allele-specific PCR	~0.1-1%	Ease of useLower cost	 Lower sensitivity Only tests small number of genomic positions 		
Digital PCR	~0.01%	 High sensitivity 	 Only tests small number of genomic positions 		
Hybrid capture- based NGS	~0.001-0.5%	 High sensitivity No need for personalization 	 Less comprehensive than WES and WGS 		
WGS	~10%	 Broadly applicable Entire genome is interrogated 	 Expensive Low sensitivity Mostly limited to SCNA detection 		
WES	~5%	 Broadly applicable Entire exome is interrogated 	ExpensiveLow sensitivity		

SCNA, somatic copy number alteration; NGS, next generation sequencing; WGS, whole genome sequencing; WES, whole exome sequencing

Adapted from Chaudhuri et al. Semin Radiat Oncol. 2015; Chin et al. Mol Diagn Ther. 2019

Outline

- ctDNA definition & sources of ctDNA
- ctDNA genotyping
- Tumor-informed vs. tumor-naïve assays
- ctDNA applications in oncology:
 - o Molecular profiling
 - Treatment Monitoring
 - o Minimal residual disease (MRD) detection

Tumor-informed vs. tumor-naïve assays

Tumor-Informed	Tumor-naïve			
Requires tissue biopsy	No need for biopsy			
Personalized assay	Off the shelf assay			
Longer turnaround time	Shorter turnaround time			
Does not account for tumor heterogeneity	Can detect clonal variants that emerge during follow-up			
Potential for better sensitivity and specificity	Variable sensitivity and specificity			

Challenges for ctDNA use in oncology

Rolfo C & Russo A. Nat Rev Clin Oncol. 2020 10

ctDNA applications in oncology

Shields M, Chen K...Pellini B. Int J Mol Sci. 2022

Outline

- ctDNA definition & sources of ctDNA
- ctDNA genotyping
- Tumor-informed vs. tumor-naïve assays
- ctDNA applications in oncology:
 - Molecular profiling
 - o Treatment Monitoring
 - o Minimal residual disease (MRD) detection

ctDNA sequencing has high sensitivity and specificity to identify actionable genomic alterations

 Table 3. Comparison of tissue versus cfDNA results for the guideline-recommended biomarkers in newly diagnosed metastatic NSCLC with FDA-approved therapies, EGFR exon 19 deletion and L858R, ALK fusion, ROSI fusion, and BRAF V600E

		Tissue+	Tissue-	Tissue not assessed	Tissue QNS	Total		
EGFR exon 19 del	cfDNA+	18	0	0	1	19	Sensitivity	81.8%
	cfDNA-	4	201	19	25	249	PPV	100.0
	cfDNA TND	0	11	1	1	13	Specificity	100.0
	cfDNA cancelled	0	0	1	0	1	NPV	98.09
	Total	22	212	21	27	282	Concordance	98.29
EGFR L858R	cfDNA+	9	0	0	2	11	Sensitivity	90.09
	cfDNA-	1	213	19	24	257	PPV	100.0
	cfDNA TND	0	11	1	1	13	Specificity	100.0
	cfDNA cancelled	0	0	1	0	1	NPV	99.5%
	Total	10	224	21	27	282	Concordance	99.6%
ALK fusion (original)	cfDNA+	5	0	0	1	6	Sensitivity	62.59
	cfDNA-	3	207	27	25	262	PPV	100.0
	cfDNA TND	1	10	2	0	13	Specificity	100.0
	cfDNA cancelled	0	1	0	0	0	NPV	98.69
	Total	9	218	29	26	282	Concordance	98.69
ALK fusion (reanalysis)	cfDNA+	6	0	0	1	7	Sensitivity	75.09
ROS1 fusion	cfDNA-	2	207	27	25	261	PPV	100.0
	cfDNA TND	1	10	2	0	13	Specificity	100.0
	cfDNA cancelled	0	1	0	0	1	NPV	99.0
	Total	9	218	29	26	282	Concordance	99.1%
	cfDNA+	0	0	0	0	0	Sensitivity	-
	cfDNA-	2	151	85	30	268	PPV	-
	cfDNA TND	0	7	5	1	13	Specificity	100.0
	cfDNA cancelled	0	1	0	0	1	NPV	98.79
	Total	2	159	90	31	282	Concordance	98.79
BRAF V600E mutation	cfDNA+	2	0	0	0	2	Sensitivity	100.0
	cfDNA-	0	90	158	18	266	PPV	100.0
	cfDNA TND	0	5	8	0	13	Specificity	100.0
	cfDNA cancelled	0	0	1	0	1	NPV	100.0
	Total	2	95	167	18	282	Concordance	100.0

Stage IV NSCLC Tumor-naïve assay (Guardant 360)

Leighl N et al. Clin Cancer Res. 2019

NOTE: Overall concordance across all four genes was greater than 98.2%, with a PPV of 100%. With continuous assay improvements, one cfDNA result originally reported as a false-negative for ALK fusion was identified as positive.

ctDNA sequencing has high sensitivity and specificity to identify actionable genomic alterations

MSK-L-651 MSK-L-558

92% of 800 patients were found to have at least one ctDNA alteration

93% concordance between ctDNA and tissue NGS to detect ALK fusions

Mondaca S et al. *Lung Cancer*. 2021 Kingston B et al. *Nat Commun*. 2021 ¹⁴

Gene rearrangements can be detected using ctDNA

Kasi P et al. Abstract OP.02. Presented at ISLB 2022

Research Use

Outline

- ctDNA definition & sources of ctDNA
- ctDNA genotyping
- Tumor-informed vs. tumor-naïve assays
- ctDNA applications in oncology:
 - o Molecular profiling
 - **o** Treatment Monitoring
 - o Minimal residual disease (MRD) detection

ctDNA decrease ≥90% at week 3 or 9 during cemiplimab treatment is associated with improved OS

Vokes N et al. 2023 ASCO Annual Meeting.

Circulating Tumor DNA Monitoring on Chemo-immunotherapy Informs Outcomes in Advanced Non-Small Cell Lung Cancer

Pellini B et al. 2023 ASCO Annual Meeting. 19

ctDNA detection on chemoIO can risk stratify patients prior to IO maintenance start, even without baseline ctDNA analysis

Patients with undetectable EGFR 8 weeks after treatment start had better PFS and OS

Mack PC et al. Clin Cancer Res. 2022 21

Treatment escalation based on ctDNA detection is under investigation for patients with *EGFR* mutations

<u>Treatment plan</u>: All patients will receive osimertinib 80mg orally daily. Patients enrolled in Arm B will receive Carboplatin (AUC 5 IV q 3 weeks) and Pemetrexed (500mg/m2 IV q 3 weeks) for a total of 4 cycles followed by pemetrexed maintenance from cycle 8 onwards.

<u>Total enrollment</u>: Approximately 571 patients will be screened. 80 will be eligible for randomization and treatment consent. 76 will be randomized.

Time to completion: 5 years

National Study PI: Helena Yu, MD (MSKCC); Moffitt PI: Bruna Pellini, MD

Outline

- ctDNA definition & sources of ctDNA
- ctDNA genotyping
- Tumor-informed vs. tumor-naïve assays
- ctDNA applications in oncology:
 - o Molecular profiling
 - o Treatment Monitoring
 - Minimal residual disease (MRD) detection

The DYNAMIC study demonstrated that a **ctDNA-guided approach** for patients with **stage II CRC** (treating only patients with a positive ctDNA after surgery) **did not compromise RFS** compared to standard-of-care

DYNAMIC Study Design

ACTRN12615000381583

Stratification Factors

- T stage (T3 vs T4)
- Type of participating center (metropolitan vs regional)

Surveillance:

- CEA \rightarrow 3-monthly for 24M, then 6-monthly for 36M
- CT C/A/P → 6-monthly for 24M, then at 36M

Recurrence-Free Survival

This approach substantially reduced the proportion receiving adjuvant chemotherapy (28% → 15%)

Tie J et al. N Engl J Med. 2022

24

ctDNA can detect minimal residual disease (MRD) and it is a prognostic biomarker

Days to relapse

Abbosh C et al. *Nature*. 2017 Chaudhuri A et al. *Cancer Discov*. 2017

25

N=80

PIs: J. Neal & M. Diehn (NCT04585477)

Slide adapted from M. Diehn at TTLC 2022 ²⁶

IMpower010: ctDNA Status in Patients With Resected NSCLC Who Received Adjuvant Chemotherapy Followed by Atezolizumab or Best Supportive Care

Adjuvant chemotherapy cleared ctDNA in ~62% of patients

Impact of chemo on ctDNA clearance status

ESMO IMMUNO-ONCOLOGY Dr Enriqueta Felip

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

IMpower-010: patients with detectable ctDNA MRD after adjuvant chemotherapy have worse prognosis

ESMO IMMUNO-ONCOLOGY Dr Enriqueta Felip

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

IMpower-010: data suggests adjuvant atezolizumab delays conversion to ctDNA +

ESMO IMMUNO-ONCOLOGY Dr Enriqueta Felip

Content of this presentation is copyright and responsibility of the author. Permission is required for re-use.

Patients with ctDNA MRD+ after surgery have better DFS and OS with adjuvant atezolizumab

Powles T et al. *Nature*. 2021 ³⁰

Prospective ctDNA MRD trial for patients with resectable NSCLC stages I-III

Slide adapted from G. Durm at 2023 Hawaii Lung Cancer Summit.

PI: Nasser Hanna; NCT04367311

ctDNA clearance after neoadjuvant chemoIO correlates with clinical outcomes

32

CM816

ctDNA clearance and pCR rates

ctDNA clearance at the end of neoadjuvant treatment was associated with improved OS

Romero A et al. J Thorac Oncol. 2021:OA20.02

Forde P et al. *Cancer Res.* 2021: CT003

NADIM

Take home points

- ctDNA can be used for molecular profiling in patients with advanced solid tumors to guide therapeutic decisions
- ctDNA can identify patients with advanced NSCLC who are responding to therapy (molecular response) at an early timepoint
- ctDNA can detect MRD and it is a strong prognostic biomarker
- Ongoing trials will inform if clinical decision-making can be guided by ctDNA and if that improves patients' outcomes

Thank you!

@BrunaPellini