UNC LINEBERGER COMPREHENSIVE CANCER CENTER

Advances in Immunotherapy – What the Future May Hold

Siddharth Sheth

Assistant Professor of Medicine Division of Oncology Department of Medicine

University of North Carolina at Chapel Hill Lineberger Comprehensive Cancer Center

Hawaii Society of Clinical Oncology 2023 Annual Conference

Electron micrograph of T cells (red) attacking cancer cells (white). Source: National Cancer Institute Duncan Comprehensive Cancer Center at Baylor College of Medicine

October 21st, 2023

Disclosures

- Sheth: no relevant disclosures to this talk
- Full COI Disclosure: <u>https://coi.asco.org/share/F3K-</u> <u>WRFQ/Siddharth%20Sheth</u>

Great to be back in Hawaii!

Classes of Cancer Directed Therapies

Cytotoxic Chemo	Hormone Therapy Targeted Therapy		Immunotherapy	
Alkylating Agents	Anti-estrogens	Biologic Agents (mAbs)	Checkpoint Inhibitors	
Antimetabolites	Anti-androgens	Small Molecules (TKIs)	Cellular Therapies	
Antimicrotubular Agents	Peptide Hormones	Antibody-Drug Conjugates	Bi-specific T-cell Engagers	
Topoisomerase Inhibitors			Cytokine Therapy	
Cytotoxic Antibiotics			Oncolytic Viruses	

1. Past

2. Present

3. Future

Agenda

How did we get here?

Chemotherapy

Targeted Therapies

Targeted Therapies

Eskander. IJWH. 2012 Patil. Biologic Targets and Therapy. 2012

(Growing) List of FDA Approved Targeted Therapies

Zhong. Signal Transduction and Target Therapy. 2021

Antibody Drug Conjugates (ADCs)

Target

HER2

CD30

BCMA

CD33

CD-19

Trop-2

TF

Nectin-4

Drug

T-DM1 & T-Dxd

Sacituzumab Govitecan

Genscript.com; 2021

ADC in NSCLC

Event	Grade 1–2	Grade 3	Grade 4	Grade 5	Overall
		number	of patients (perce	nt)	
Drug-related adverse event	46 (51)	37 (41)	4 (4)	1 (1)*	88 (97)
Drug-related adverse events with ≥20% incidence					
Nausea	58 (64)	8 (9)	0	0	66 (73)
Fatigue†	42 (46)	6 (7)	0	0	48 (53)
Alopecia	42 (46)	0	0	0	42 (46)
Vomiting	33 (36)	3 (3)	0	0	36 (40)
Neutropenia	15 (16)	14 (15)	3 (3)	0	32 (35)
Anemia§	21 (23)	9 (10)	0	0	30 (33)
Diarrhea	26 (29)	2 (2)	1 (1)	0	29 (32)
Decreased appetite	27 (30)	0	0	0	27 (30)
Leukopenia¶	17 (19)	4 (4)	0	0	21 (23)
Constipation	20 (22)	0	0	0	20 (22)

ADC are well tolerated but have real toxicities!

Cytotoxic Payload Side Effects

- Class effects: myelosuppression, nausea
- ADC specific effects:
 - 1. Vedotin: peripheral neuropathy
 - 2. Deruxtecan: pulmonary toxicity
 - 3. Ozogamycin: hepatotoxicity (VOD/SOS)

Antibody Side Effects

- Generally, well tolerated
- Class effects: infusion-related reactions
- Trastuzumab: Cardiotoxicity

Linker Effects:

- Unclear direct effects
- Alters release kinetics of cytotoxic payload
- Cleavable & non-cleavable linkers

Challenges with our mainstream therapies

#1 Often response rates are modest and may not confer a survival benefit

#2 Drug resistance

#3 Lack of biomarkers for optimal patient selection

The Present

The T Cell

PD1 Mechanism of Action

Clinical Benefit with PD1/PDL1 therapy is real and significant!

Gogishvili. Nature Medicine. 2022 Burtness. Lancet. 2010 Tanda. Frontiers. 2021 Vosoughi. BMC Cancer. 2018

Bonfire Analogy: Enhancing Immune Response

Combination Immunotherapies

Pico de Coana. Cell Press. 2015 PDQ Melanoma Treatment. 2016

Perhaps we don't give up on the old-timers yet...

- Neoadjuvant therapy in HNSCC is controversial
- Not SOC
- Intense research interest, particularly incorporating PD1 therapies

MPR=major pathologic response; pCR=complete pathologic response

Agent/s	MPR/pCR
PD1	~14%

Combination Therapies

The Future is here...

I am not an expert in...

- 1. Immunology
- 2. Bioinformatics
- 3. Cellular therapy
- 4. Genetics
- 5. Virology

However, it is critically important that we become familiar with emerging therapies because your patients will be asking about these treatments.

Cytotoxic Chemo Hormone Therap		Targeted Therapy	Immunotherapy	
Alkylating Agents	Anti-estrogens	Biologic Agents (mAbs)	Checkpoint Inhibitors	
Antimetabolites	Anti-androgens	Small Molecules (TKIs)	Cellular Therapies	
Antimicrotubular Agents	Peptide Hormones	Antibody-Drug Conjugates	Bi-specific T-cell Engagers	
Topoisomerase Inhibitors			Cytokine Therapy	
Cytotoxic Antibiotics			Oncolytic Viruses	

Where new IO-based therapies may have biggest impact

Cellular therapies fall into 1 of 2 categories based on their target

<u>Immunopeptidome</u>

- Set of peptides present by tumor cells
- Actioned by T-cells

<u>Surfaceome</u>

- Set of antigens on the surface of the cancer cell
- Actioned by antibodies and antibody constructs

Bauer. Intern J Mol Sciences. 2019 Wang. Molecular Cancer Therapeutics. 2022

The Immunopeptidome

- 1. Vaccines
- 2. TCR

Vaccines

- Vaccines directed against specific tumor antigens
- Prime *de-novo* immune responses
- Earliest efforts in Melanoma

• T-cell responses were robust, durable, and polyfunctional

mRNA-4157

- mRNA-4157 (V940) is an individualized neoantigen therapy designed to target an individual patient's unique tumor mutations and encodes up to 34 neoantigens^{1,2}
- Therapies targeting neoantigens can increase endogenous neoantigen T-cell responses and induce epitope spreading to novel antigens with the ability to drive antitumor responses and maintain memory with cytolytic properties, potentially producing longterm disease control for patients³⁻⁷

PANDA-VAC

T cell Receptor (TCR)

Challenges

- Product manufacturing
- Patient selection
- Preparation with lymphodepletion

Tebentafusp

FDA Approval in Uveal Melanoma in 2022

The Surfaceome

- 1. CAR-T
- 2. Bite

CAR-T

CAR-T Side Effects

Intracranial hemorrhage

Hemodynamic instability

Capillary leak syndrome

Approved CAR-T Cell Therapies

FDA-Approved CAR T-Cell Therapies

Generic Name	Brand Name	Target Antigen	Targeted Disease	Patient Population
Tisagenlecleucel	Kymriah	CD19	B-cell acute lymphoblastic leukemia (ALL)	Children and young adults with refractory or relapsed B-cell ALL
			B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
Axicabtagene ciloleucel	Yescarta	CD19	B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
			Follicular lymphoma	Adults with relapsed or refractory follicular lymphoma
Brexucabtagene	Tecartus	CD19	Mantle cell lymphoma (MCL)	Adults with relapsed or refractory MCL
		B-cell acute lymphoblastic leukemia (ALL)	B-cell acute lymphoblastic leukemia (ALL)	Adults with refractory or relapsed B-cell ALL
Lisocabtagene maraleucel	Breyanzi	CD19	B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
Idecabtagene vicleucel	Abecma	BCMA	Multiple myeloma	Adults with relapsed or refractory multiple myeloma
Ciltacabtagene autoleucel	Carvykti	BCMA	Multiple myeloma	Adults with relapsed or refractory multiple myeloma

U.S. CAR T-cell Therapy Market

Size, by Product, 2020 - 2030 (USD Billion)

Bispecific T cell Engager (BiTE)

Tarlatamab

- MOA: BITE
- AE's: CRS in 52%, G3 in 1%; Neurologic in 70%, 1% G3
- RR: 23%; >30% at higher doses

TCR vs CAR-T

	Modified TCR expressed on T-cells, NK cells, and other cells	CAR expressed on T-cells, NK cells, and other cells
Constructs	Native or minimally engineered native TCR delivered via biologic vector	Artificial receptor complex delivered by a biologic vector
Targets	MHC peptides derived from intracel- lular proteins	Surface proteins and glycans
Manufacturing	Ex vivo gene transfer into autologous T-cells or NK cells, "personalized" for each patient	Ex vivo gene transfer into autologous T-cells or NK cells, "personalized" for each patient
Mechanism of action	Binds and kills target cells leading to limited clonal expansion of T-cells	Binds and kills target cells leading to extensive clonal expansion of T-cells
Dosing	Single or limited doses	Single or limited doses
Availability	Experimental basis only	Experimental and commercially avail- able products
Unique facets	Small patient populations for any single construct	Limited number of suitable potential targets
Safety	Modest cytokine release syndrome due to limited proliferation	Extensive cytokine release syndrome due to extensive cell proliferation
Mechanism of resistance	Loss of target, loss of IFNy signaling	Loss of target, loss of IFNy signaling

TILs

TIL vs. Ipi in Metastatic Melanoma

Rohaan. NEJM. 2022

The curves look better but not great...

Our goal is cure.

DELIVERING DISCOVERIES: EXPANDING THE REACH OF PRECISION MEDICIN

National Cancer Institute (NCI) 29,209 followers 2mo

NCI Director Dr. Sharpless highlights research findings from the 2018 ASCO meeting.

Of course, we don't want to overpromise and give people, especially patients, false hope. But too many from my generation are afraid to be optimistic, too sheepish to ever use the word "cure." But that's what we want to do, *cure* our patients. We are, in fact, curing patients right now, more than ever, including those with metastatic cancer.

A Vision on How to Cure

Cellular Therapies in Community Oncology??

Home / Learn / Precision Medicine / Treatment / Immunotherapy / Effective Practices For Optimizing Care Coordination and Delivery of CAR T-Cell Therapy Across Care Settings / Bringing CAR T-Cell Therapies to Community Oncology

BRINGING CAR T-CELL THERAPIES TO COMMUNITY ONCOLOGY

The delivery of CAR T-cell therapy requires workforce and infrastructure not necessitated by more traditional cancer therapies, such as chemotherapy and radiation. While sustained remission and improved survival for patients with hematologic malignancies has led to a growing interest in CAR T-cell therapy among community cancer providers, there is a wariness among lesser-resourced programs and practices to take steps to offer CAR T-cell therapy. Smaller community cancer programs have expressed a preference for referring patients who are candidates for CAR T-cell therapy to larger cancer programs and academic medical centers, due to unfamiliarity with the therapy; inadequate reimbursement for steep costs; insufficient infrastructure; and the potential for unfamiliar life-threatening toxicities in patients.

In a series of **surveys** in 2016 and 2017, of nearly 400 US community oncologists/hematologists and practice administrators representing a diverse mix of practice types and geographic regions, 64% said the biggest barrier they face to successfully implementing CAR T-cell therapy is the logistics involved in administering treatment and patient follow-up.

ACCC, with support by Bristol Myers Squibb, Janssen Oncology, and Legend Biotech, is helping community cancer programs and practices of all sizes gain the education they need to offer CAR T-cell therapy, sharing effective practices on overcoming logistical and financial hurdles, and highlighting tips on the operational infrastructure (eg, care coordination and patient support) required for a successful program.

For more information on this program, please contact the **ACCC Provider Education department**.

Cellular Therapies in Community Oncology

Summary Bold Statements

- 1. We will continue to see rapid advances in immunotherapy, particularly in solid oncology
- Our "older" agents continue to have a purpose and will be a part of the solution (*not replaced*) to achieve more cures
- 3. Newer therapies will become mainstream, outpatient, "off-the-shelf", community based in the not-too-distant future

Siddharth Sheth Siddharth.sheth@med.unc.edu

