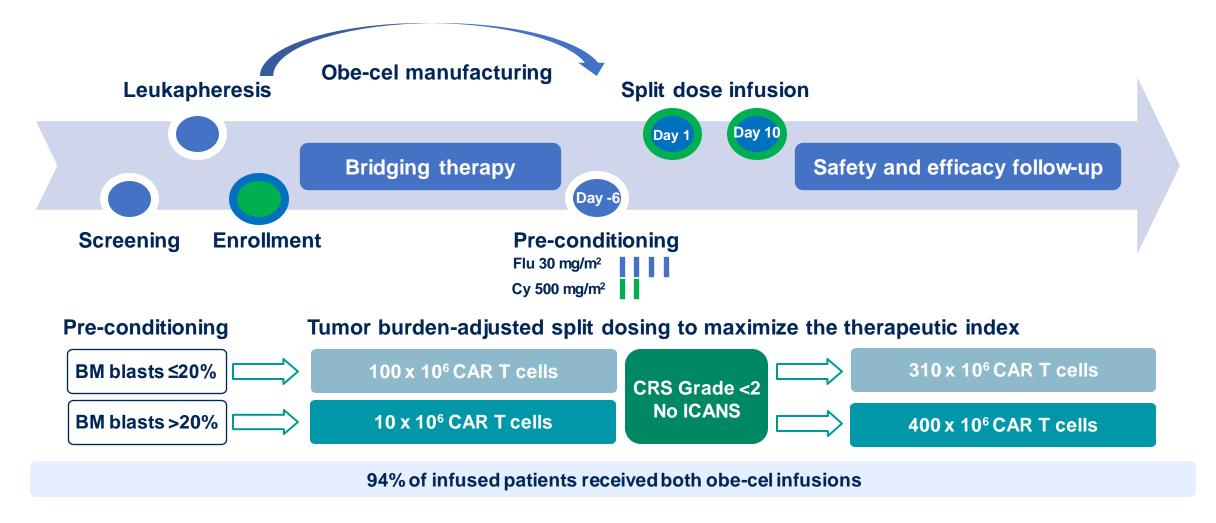
Updates in Leukemia

Prajwal Dhakal, MBBS

Acute lymphoblastic leukemia

PhALLCON: Phase III study comparing Ponatinib vs Imatinib in Philadelphia chromosome positive ALL

- Newly diagnosed Ph+ ALL
- Ponatinib 30 mg daily or Imatinib 600 mg daily with reduced intensity chemotherapy
- End of induction (cycles 1-3) consolidation (cycle 4-9) post consolidation (cycles 10-20)
- After cycle 20, single agent ponatinib or imatinib until disease progression or unacceptable toxicity
- Composite primary endpoint :
 - MRD-neg (BCR::ABL1 ≤0.01%) complete remission (CR) for 4 weeks at end of induction
- Secondary endpoints:
 - EFS (any cause death, failure to achieve CR for 4 weeks by end of induction, relapse from CR)


PhALLCON: Phase III study comparing Ponatinib vs Imatinib in Philadelphia chromosome positive ALL

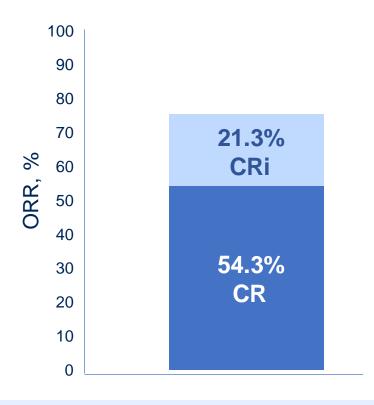
	Ponatinib	lmatinib
Responses at end of induction, n (%)	(N=154)	(N=78)
MRD-neg (BCR::ABL1 ≤0.01%) CR	53 (34)	13 (17)
p value	0	.0021
MR 4 (≤0.01%)	64 (42)	16 (21)
MR 4.5 (≤0.0032%)	39 (25)	10 (13)
Adverse effects, n (%)	(N=163)	(N=81)
Grade 5 TEAEs/treatment-related AEs	8 (5) / 0	4 (5) / 1 (1)
Grade 3-4 TEAEs	139 (85)	71 (88)
TE aortic occlusion events (any Grade)	4 (2)	1 (1)

PhALLCON: Phase III study comparing Ponatinib vs Imatinib in Philadelphia chromosome positive ALL

	Ponatinib	Imatinib
Hematopoietic cell transplantation (%)	31	37
Lack of efficacy (%)	7	26
Median Follow-up (months)	20 months	18 months
Median EFS	HR 0.652 (95% CI 0.385-1.104)	

FELIX study on Obecabtagene- Autoleucel in R/R B-ALL

CRS, cytokine release syndrome; cy, cyclophosphamide; flu, fludarabine; ICANS, immune effector cell associated neurotoxicity syndrome



FELIX study: Disease Response per IRRC Assessment

76% of infused patients achieved CR/CRi

ORR: 76% 95% CI (66, 84) p<0.0001*

97% of responders with evaluable samples were MRD negative at 10⁻⁴ level by flow cytometry

*One-sided p-value from the exact test on H0: ORR ≤40% vs H1: ORR >40% CR, complete remission, CRi, CR with incomplete blood count recovery; IRRC, independent response review committee; MRD, minimal residual disease; ORR, overall remission rate

FELIX study: Safety – CRS and ICANS

Low rates of Grade ≥3 CRS and/or ICANS were observed

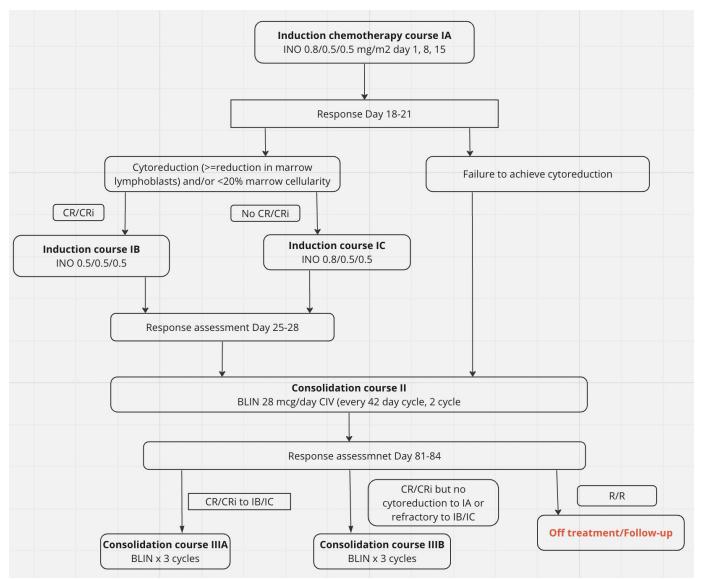
	BM blasts ≤20% at pre-conditioning (N = 37)	BM blasts >20% at pre-conditioning (N = 57)	All infused patients (N = 94)
CRS			
Any grade, n (%)	24 (64.9)	47 (82.5)	71 (75.5)
Grade ≥3, n (%)	1 (2.7)	2 (3.5)	3 (3.2)
ICANS			
Any grade, n (%)	5 (13.5)	19 (33.3)	24 (25.5)
Grade ≥3, n (%)	1 (2.7)	6 (10.5)	7 (7.4)

- Tocilizumab and steroid was used to treat CRS in 53/94 (56%) and 16/94 (17%) patients, respectively
- 3/94 (3%) patients required vasopressor for treatment of CRS
- 6/7 (86%) Grade ≥3 ICANS were observed among patients with >75% BM blasts at pre-conditioning

CRS, cytokine release syndrome; ICANS, immune effector cell associated neurotoxicity syndrome

- Brexucabtagene Autoleucel- anti CD-19 CAR T-cell therapy, approved for R/R B-ALL
- Real-world post approval study
- 76 adult patients from 13 centers in US
- Median age 44 (18-81); Female 46%; Non-Hispanic White 57%; Hispanic 25%

Ph-neg/ Ph +	71/29
Median number of lines of therapy (range)	4 (1-9)
Prior BLIN (%)	53
Prior INO (%)	37
Prior transplant (%)	46


Active disease at apheresis (%)	69
CR with MRD + (%)	19
CR with MRD- (%)	12
CNS-3 disease (%)	11
Median follow-up for survivors (months)	8.3

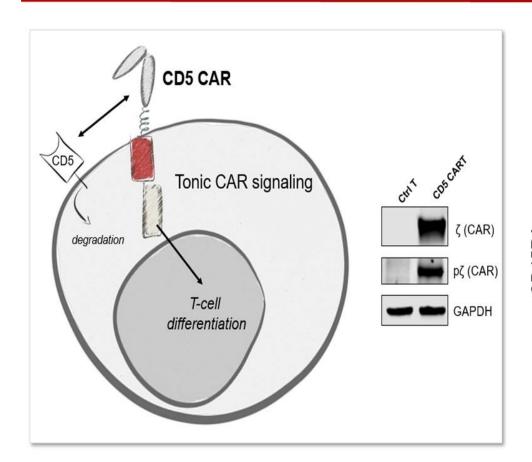
Response rates at D+28 (n=70)		
CR/CRi	64 (91%)	
MRD-	54	
MRD +	10	
No response	6 (9%)	
Active CNS+	10	
CR	8	
No response	2	

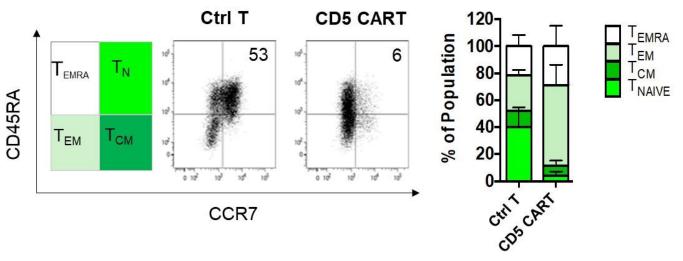
Toxicity: CRS and ICANS	
CRS (any grade)	62 (83%)
CRS Grade 1-2	57
CRS Grade 3-4	5
No CRS	13 (17%)
ICANS (any grade)	46 (61%)
ICANS Grade 1-2	17
ICANS Grade 3-4	29
No ICANS	30

Six-month outcomes	Duration of remission (%)	Progression Free Survival (%)	Overall Survival (%)
Post-CAR MRD negative CR	83	78	94
Post-CAR MRD positive CR	35	35	100
No response to Brexu-cel	-	0	50

- INDUCTION THERAPY: Course IA (INO 0.8/0.5/0.5 mg/m2) day 1, 8, 15→ Response D18-21
 - CRi/CRi→ Induction course IB INO 0.5/0.5/0.5 → response D 25-28
 - No CR/CRi but cytoreduction → Induction course IC INO 0.8/0.5/0.5 → response D 25-28
 - No cytoreduction
- CONSOLIDATION II: BLIN x 2 cycles (after IB, IC, no cytoreduction)→ response D 81-84
- CONSOLIDATION III
 - If CR/CRi to IB/IC→ consolidation course IIIA→ BLIN x 2 cycles
 - If CR/CRi but failure of ALL cytoreduction to IA or refractory to IB/IC→ consolidation course
 IIIB→ BLIN x 3 cycles

Best response		
Best cumulative response		
CR/CRh/CRi	20/11/1 (32, 96%)	
Refractory/Progressive	1 (3)	
Best response course (IA/B/C)		
CR/CRh/CRi	30 (85%)	
Refractory	3 (9)	
Undetermined	2 (6)	
Best response end course II		
CR	19	
CRh/CRi	13	


1-year EFS	75% (90% CI, 63-89)
1-year OS	84% (95% CI, 72-98%)
Relapse	9
Systemic + CNS relapse	2
CD19 negative	3
CD22 negative	1
Death with refractory ALL	1
Death in remission	2
On study therapy	1
After allogeneic HCT	1


Grade ≥3 adverse events ≥10% evaluable patients		
Decreased ANC	29 (87.9%)	
Decreased PLT	24 (72.7%)	
Anemia	14 (42.2%)	
Decreased WBC	13 (39.4%)	
Decreased lymphocytes	9 (27.3%)	
Febrile neutropenia	7 (21.2%)	
Encephalopathy	4 (12.1%)	

Total deaths	9 (of N=33)
Relapsed ALL	6 (18%)
AE/refractory ALL	1 (3%)
Respiratory failure, liver failure, reported VOD	
AE/in remission	2
On study therapy (encephalopathy, pancytopenia, liver failure)	1
Complication of allogeneic HCT (respiratory failure)	1

CD5 CAR-T cells are more terminally differentiated in T-ALL

Mamonkin M, et al. Cancer Immunol Res 2018 Srinivasan et al., unpublished data

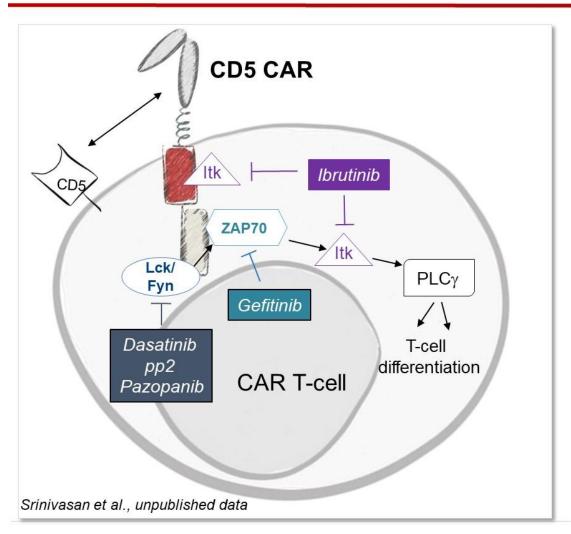
PRESENTED BY: LaQuisa Hill MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

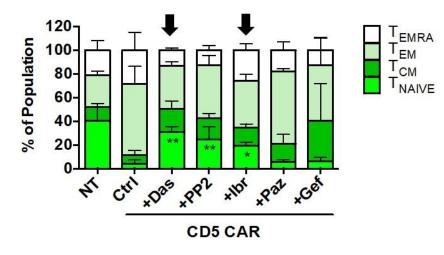
Initial clinical responses in T-ALL

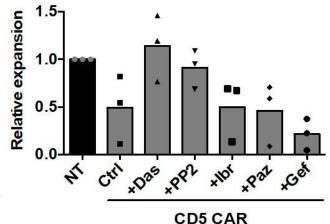
Age/Sex	Disease Type	Disease status	Dose Level	Best Clinical Response
		ORR 12.5%		
39M	T-ALL	Primary Refractory	DL 1	SD
51F	T-ALL	Relapsed post-SCT	DL 2	SD
15F	T-ALL	Primary Refractory	DL 2	MRD+ CR
40M	T-ALL	Relapsed	DL 2	PD
19M	T-LBL	Primary Refractory	DL 2	PD
11M	T-ALL	Relapsed	DL 3	PD
36F	T-ALL	Primary Refractory	DL 3	PD
12F	T-ALL	Relapsed post-SCT	DL3	PD

CD5 expression remained detectable in all patients


PRESENTED BY: LaQuisa Hill MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.




Inhibition of tonic CD5 CAR signaling prevents excessive T-cell differentiation

Phenotype of CD5 CAR T-cells expanded with TKIs

Madhu Srinivasar

PRESENTED BY: LaQuisa Hill MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org

Improved responses with TKI inhibition

Age/Sex	Disease Type	Disease status	Dose Level	Best Clinical Response
		ORR 57%		
		Autologous (+TKI)		
14M	T-ALL	Primary refractory	DL 2	PD
65F	T-LBL	Relapsed	DL 3	SD
17M	T-ALL	Primary refractory	DL 3	MRD-CR
70F	T-ALL	Relapsed	DL3	MRD- CR
		Donor-derived (+TKI)		
13F*	T-ALL	Relapsed post-alloSCT	DL1	MRD- CR
43M	T-ALL	Relapsed post-alloSCT	DL1	MRD- CR
45F	T-ALL	Relapsed post-alloSCT	DL1	SD

^{*} Treated on DL3 in non-TKI arm with no response

PRESENTED BY: LaQuisa Hill MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

No increase in severity of CRS/ICANS with TKI inhibition

	Cohort 1 (N=8)	Cohort 2 (N=7)
Responses		
CR, n (%)	1 (12.5)	4 (57)
MRD neg, n (%)	0 (0)	4 (57)
Toxicities		
CRS, n (%)	2 (25)	5 (71)
Grade 1-2	2 (25)	5 (71)
Grade ≥3	0 (0)	0 (0)
NT/ICANS, n (%)	1 (12.5)	0 (0)
Grade 1-2	1 (12.5)	0 (0)
Grade ≥3	0 (0)	0 (0)
aGVHD, n (%)	0 (0)	0 (0)

PRESENTED BY: LaQuisa Hill MD

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Acute myeloid leukemia

CPX-351 vs 7+3: survival outcomes based on bone marrow blasts percentage in AML

- Phase III, newly diagnosed or secondary AML patients 60-75 years
- 5-year follow-up (median follow-up 60.9 months)

Baseline BM blasts	< 20%	‰ ^a	20%–	40%	> 40%	–60%	> (60%	
Treatment	CPX-351	7+3	CPX-351	7+3	CPX-351	7+3	CPX-351	7+3	
N	21	22	62	65	34	34	32	29	
Median OS, mo	12.6	7.3	11.6	6.0	8.1	4.9	4.7	2.9	
HR (95% CI)	0.38 (0.19	0, 0.75)	0.62 (0.4)	2, 0.91)	0.72 (0.4	3, 1.21)	0.67 (0.	.40, 1.14)	
Median EFS, mo	3.0	1.1	2.5	2.2	5.0	1.0	2.0	1.2	
HR (95% CI)	0.60 (0.32	2, 1.14)	0.81 (0.5	5, 1.18)	0.45 (0.2	7, 0.77)	0.54 (0.	.31, 0.95)	
CR, n (%)	7 (33)	5 (23)	25 (40)	21 (32)	16 (47)	8 (24)	9 (28)	4 (14)	
OR (95% CI)	3.78 (0.68	, 21.05)	1.22 (0.5	6, 2.66)	2.89 (0.9	9, 8.44)	1.72 (0.	.41, 7.21)	
Median 5-years OS% (95% CI)	26.0 (9.6, 46.1)	0	22.4 (12.9, 33.4)	9.2 (3.8, 17.7)	19.4 (8.1, 34.4)	8.8 (2.3, 21.1)	6.3 (1.1, 18.1)	3.4 (0.30, 14.9)	

Myelodysplastic syndrome

The COMMANDS study

The COMMANDS study (NCT03682536) is a global, phase 3, open-label, randomized trial comparing the efficacy and safety of luspatercept versus epoetin alfa for the treatment of anemia due to IPSS-R LR-MDS in ESA-naive patients who require RBC transfusions

Key eligibility criteria

- ≥ 18 years of age
- IPSS-R Very low-, Low-, or Intermediaterisk MDS (with or without RS) by WHO 2016, with < 5% blasts in bone marrow^a
- Required RBC transfusions (2-6 pRBC units/8 weeks for a minimum of 8 weeks immediately prior to randomization)
- Endogenous sEPO < 500 U/L
- ESA-naive

Patients stratified by:

- Baseline sEPO level
- Baseline RBC transfusion burden
- RS status

Luspatercept (N = 178) 1.0 mg/kg s.c. Q3W titration up to 1.75 mg/kg

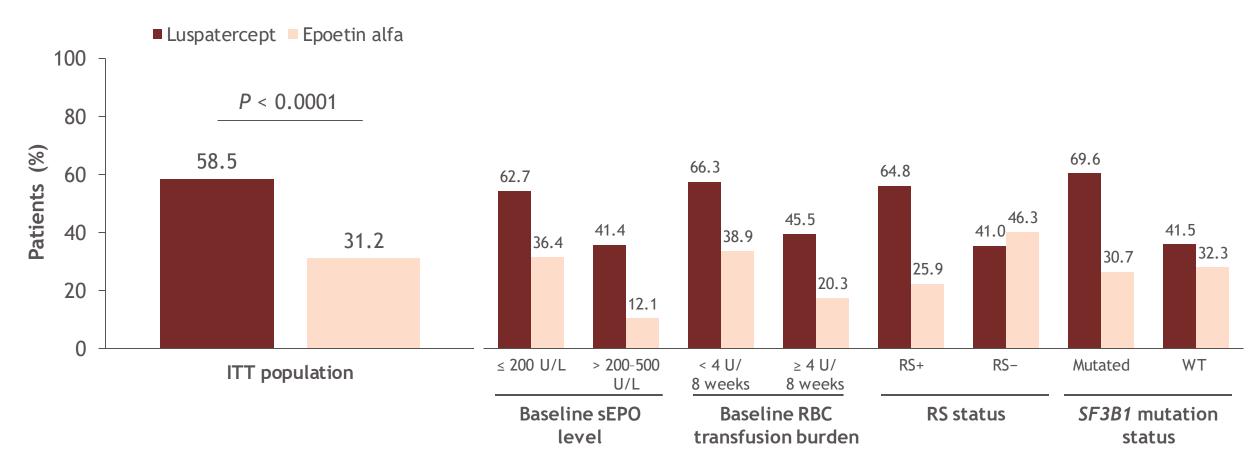
Randomized

1:1

Epoetin alfa (N = 178)^b 450 IU/kg s.c. QW titration up to 1050 IU/kg Response assessment at day 169 and every 24 weeks thereafter

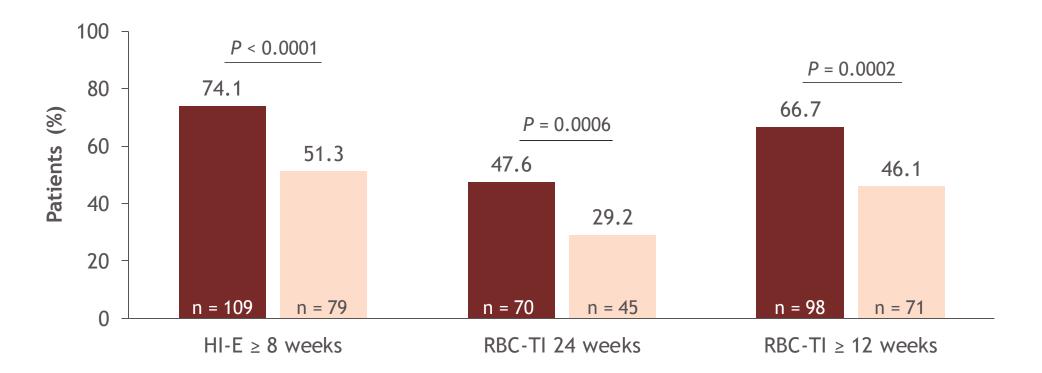
End treatment

Due to lack of clinical benefit^c or disease progression per IWG criteria

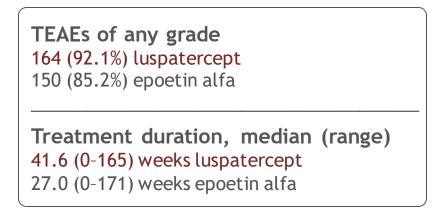

Post-treatment safety follow-up

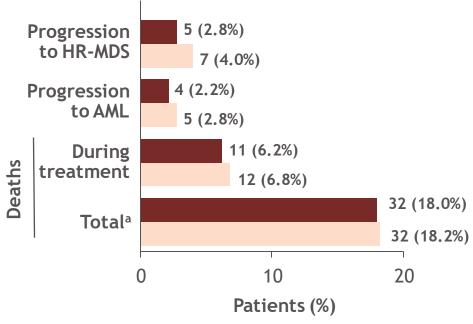
- Monitoring for other malignancies, HR-MDS or AML progression, subsequent therapies, survival
- For 5 years from first dose or 3 years from last dose, whichever is later

aMDS with del(5q) were excluded; b2 patients randomized to the epoetin alfa arm withdrew consent prior to receiving their first dose; Clinical benefit defined as transfusion reduction of ≥ 2 pRBC units/8 weeks versus baseline. AML, acute myeloid leukemia; HR, high risk; IPSS-R, Revised International Prognostic Scoring System; IWG, International Working Group; pRBC, packed RBC; QW, once weekly; Q3W, every 3 weeks; RBC, red blood cell; s.c., subcutaneously; sEPO, serum erythropoietin; WHO, World Health Organization.


COMMANDS: achievement of primary endpoint in different patient subgroups

• Primary endpoint: RBC-TI ≥ 12 weeks with concurrent mean Hb increase ≥ 1.5 g/dL (weeks 1-24)

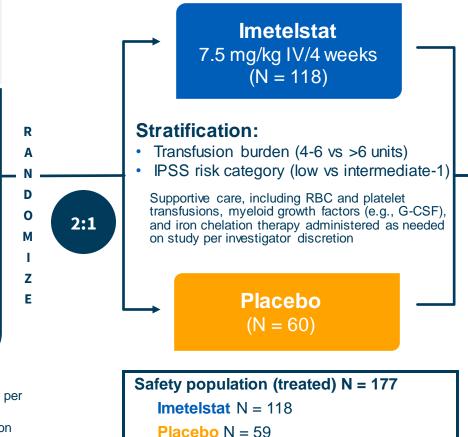

COMMANDS secondary endpoints: luspatercept superior to epoetin alfa


	Luspatercept (N = 147)	Epoetin alfa (N = 154)
Time to first RBC transfusion (week 1-EOT), median (range), weeks	n = 93 168.0 (64.0-323.0)	n = 116 42.0 (22.0-55.0)

COMMANDS: safety

	Luspatercept (N = 178)		Epoetin alfa (N = 176)		
Patients, n (%)	Any grade	Grade 3/4	Any grade	Grade 3/4	
Heme-related TEAEs					
Anemia	17 (9.6)	13 (7.3)	17 (9.7)	12 (6.8)	
Thrombocytopenia	11 (6.2)	7 (3.9)	3 (1.7)	1 (0.6)	
Neutropenia	9 (5.1)	7 (3.9)	13 (7.4)	10 (5.7)	
Leukocytopenia	2 (1.1)	0	3 (1.7)	0	
TEAEs of interest					
Fatigue	26 (14.6)	1 (0.6)	12 (6.8)	1 (0.6)	
Diarrhea	26 (14.6)	2 (1.1)	20 (11.4)	1 (0.6)	
Peripheral edema	23 (12.9)	0	12 (6.8)	0	
Asthenia	22 (12.4)	0	25 (14.2)	1 (0.6)	
Nausea	21 (11.8)	0	13 (7.4)	0	
Dyspnea	21 (11.8)	7 (3.9)	13 (7.4)	2 (1.1)	
TEE	8 (4.5)	5 (2.8)	5 (2.8)	1 (0.6)	

IMerge Phase 3 Trial Design (MDS3001; NCT02598661)


Phase 3

Double-blind, randomized 118 Clinical sites in 17 countries

Patient Population (ITT N = 178):

- IPSS low- or intermediate 1- risk MDS
- Relapsed/refractorya to ESA or EPO >500 mU/mL (ESA ineligible)
- Transfusion dependent: ≥4 units RBCs/8 weeks over 16-week prestudy
- Non-deletion 5q
- No prior treatment with lenalidomide or **HMAs**

^aReceived ≥8 weeks of ESA treatment (epoetin alfa ≥40,000 U, epoetin beta ≥30,000 U or darbepoetin alfa 150 µg or equivalent per week) without Hgb rise ≥1.5 g/dL or decreased RBC transfusion requirement ≥4 U/8 weeks *or* transfusion dependence or reduction in Hgb by ≥1.5 g/dL after hematologic improvement from ≥8 weeks of ESA treatment.

Primary End Point:

8-week RBC-Tlb

Key Secondary End Points:

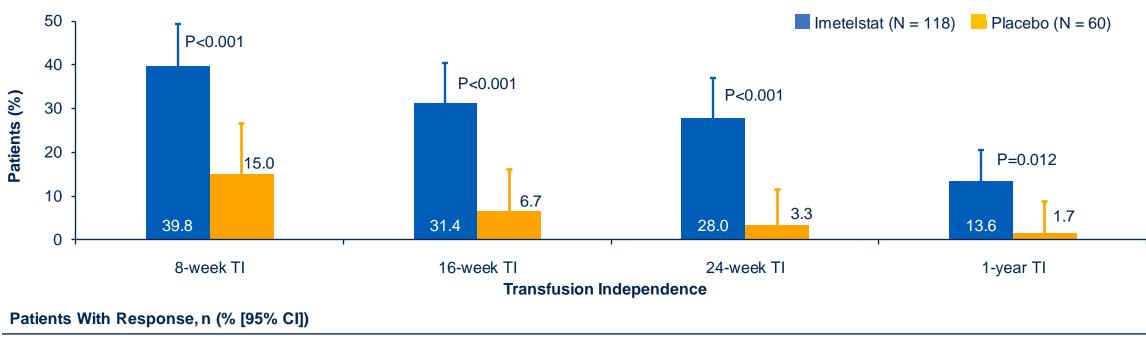
- 24-week RBC-Tlb
- **Duration of TI**
- Hematologic Improvement-**Erythroid**
- Safety

Key Exploratory End Point:

- VAF changes
- PRO (fatigue measured by FACIT-Fatique)

^bProportion of patients without any RBC transfusion for ≥8 consecutive weeks since entry to the trial (8-week TI); proportion of patients without any RBC transfusion for ≥24 consecutive weeks since entry to the trial (24-week TI)

EPO, erythropoietin; ESA, erythropoiesis stimulating agent; G-CSF, granulocyte colony-stimulating factor; Hgb, hemoglobin; HMA, hypomethylating agent; IPSS, International Prognostic Scoring System; ITT, intent-to-treat; IV, intravenous; MDS, myelodysplastic syndromes; PRO, patient-reported outcome; RBC, red blood cell; TI, transfusion independence, VAF, variant allele frequency.

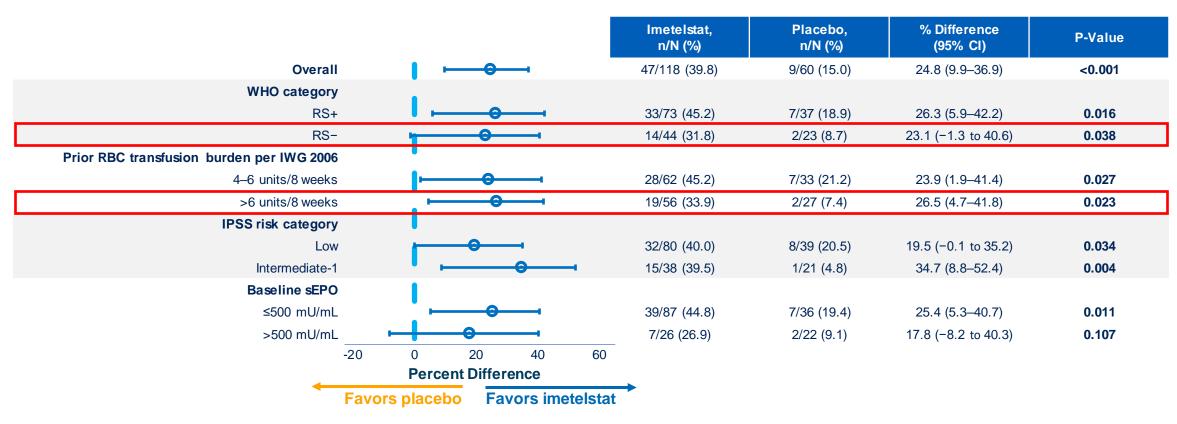

Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@asco.org.

Higher Rates of Longer-Term Duration of RBC TI Observed With Imetelstat vs Placebo^a

Imetelstat	47 (39.8 [30.9–49.3])	37 (31.4 [23.1–40.5])	33 (28.0 [20.1–37.0])	16 (13.6 [8.0–21.1])
Placebo	9 (15.0 [7.1–26.6])	4 (6.7 [1.9–16.2])	2 (3.3 [0.4–11.5])	1 (1.7 [0.0–8.9])

Data cutoff: October 13, 2022.

^aPrimary end point 8-w eek and the first secondary end point 24-w eek TI are statistically significant by study prespecified gatekeeping testing procedure. One-year TI represented a preliminary assessment. P-values determined by the Cochran-Mantel-Haenszel test, with stratification for prior RBC transfusion burden (≥4 to ≤6 vs >6 RBC units/8-w eeks during a 16-w eek period prior to randomization) and baseline IPSS risk category (low vs intermediate-1) applied to randomization.


IPSS, International Prognostic Scoring System; RBC, red blood cell; TI, transfusion independence.

Primary End Point: 8-Week RBC-TI Rate Significantly Higher With Imetelstat vs Placebo Across Key LR-MDS Subgroups

Data cutoff: October 13, 2022.

P-values determined by the Cochran-Mantel-Haenszel test, with stratification for prior RBC transfusion burden (≥4 to ≤6 vs >6 RBC units/8-w eeks during a 16-w eek period prior to randomization) and baseline IPSS risk category (low vs intermediate-1) applied to randomization.

IPSS, International Prognostic Scoring System; IWG, International Working Group; LR-MDS, lower-risk myelodysplastic syndromes; RBC, red blood cell; RS, ring sideroblast; sEPO, serumerythropoietin; TI, transfusion independence.

Consistent With Prior Clinical Experience, the Most Common AEs Were Hematologic

Grade 3–4 thrombocytopenia and neutropenia were the most frequently reported AEs, most often reported during Cycles 1–3

Nonhematologic AEs were generally low grade

Although ≈75% of patients treated with imetelstat had dose modifications due to AEs, <15% of patients discontinued treatment due to TEAEs

No cases of Hy's Law or drug-induced liver injury observed

The incidence of grade 3 liver function test laboratory abnormalities was similar in both treatment groups

AE (≥10% of	Imetelsta	at(N = 118)	Placebo	(N = 59)
patients), n (%)	Any Grade	Grade 3–4	Any Grade	Grade 3–4
Hematologic				
Thrombocytopenia	89 (75)	73 (62)	6 (10)	5 (8)
Neutropenia	87 (74)	80 (68)	4 (7)	2 (3)
Anemia	24 (20)	23 (19)	6 (10)	4 (7)
Leukopenia	12 (10)	9 (8)	1 (2)	0
Other				
Asthenia	22 (19)	0	8 (14)	0
COVID-19	22 (19) ^a	2 (2) ^b	8 (14) ^a	3 (5) ^b
Headache	15 (13)	1 (1)	3 (5)	0
Diarrhea	14 (12)	1 (1)	7 (12)	1 (2)
ALT increased	14 (12)	3 (3)	4 (7)	2 (3)
Edema peripheral	13 (11)	0	8 (14)	0
Hyperbilirubinemia	11 (9)	1 (1)	6 (10)	1 (2)
Pyrexia	9 (8)	2 (2)	7 (12)	0
Constipation	9 (8)	0	7 (12)	0

Data cutoff: October 13, 2022.

^aIncluded COVID-19, asymptomatic COVID-19, and COVID-19 pneumonia. ^bOnly COVID-19 pneumonia events were grade 3–4 COVID-19. AE, adverse event; ALT, alanine aminotransferase.

Thank you!!

Prajwal Dhakal, MBBS
Clinical Assistant Professor
Department of Internal Medicine
Division of Hematology, Oncology, Blood and Marrow
Transplantation

Email: prajwal-dhakal@uiowa.edu

