

Holden Comprehensive Cancer Center

Multiple Myeloma Updates from ASCO 2023

Christopher Strouse MD August 25th, 2023

> CHANGING MEDICINE. CHANGING LIVES.®

Disclosures

- Advisory board
 Pfizer
- We will discuss off label / investigational uses

- Ciltacabtagene, Idecabtagene, Talquetamab, Teclistamab

Acknowledgements

• Thank you to the abstract presenters for use of their slides:

- Dr. Yael Cohen (Abstract # 8002)
- Dr. Yi Lin (Abstract # 8009)
- Dr. Binod Dhakal (Abstract # LBA4)
- Dr. Carolina D Schinke (Abstract # 8036)
- Dr. Ross S Firestone (Abstract # 8049)
- Dr. Michel Delforge (Abstract # 8032)
- Dr. Ajay Nooka (Abstract # 8008)

RRMM: aCD38 triplets well established

RRMM: aCD38 triplets with OS benefit

CAR T cells in early relapse

- CARTITUDE 4
- KARMMA-3

- Quality of life abstract from ASCO Michel Delforge 8032

CAR T in early relapse: Ide-cel in pole position

Rodriguez-Otero et al. NEJM 2023

HRQOL in KARMMA-3

- Ide-cel outperforms SOC options in most domains
- Well tolerated infusion, prolonged off-therapy duration
- Caveat: unblinded assessments

Hedges' g-value Domain (95% CI) (95% CI) Functioning domains EORTC QLQ-C30 0.46 (0.25, 0.68) GHS/QoL 0.34 (0.13, 0.56) Physical functioning Role functioning 0.19(-0.02, 0.41)----0.39 (0.18, 0.61) Emotional functioning Cognitive functioning 0.46 (0.24, 0.67) Social functioning 0.37 (0.16, 0.59) EORTC QLQ-MY20 Future perspective 0.49 (0.27, 0.70) Body image 0.29 (0.08, 0.51) EQ-5D-5L Health utility index 0.18(-0.04, 0.39)VAS 0.60 (0.39, 0.82) Favors standard regimens Favors ide-cel Symptoms domains EORTC QLQ-C30 Fatigue -0.40(-0.62, -0.19)Nausea and vomiting -0.13 (-0.34, 0.08) Pain -0.33 (-0.54, -0.11) -0.53 (-0.74, -0.31) Dyspnea -0.35 (-0.57, -0.14) Insomnia -0.08 (-0.29, 0.13) Appetite loss -0.38 (-0.59, -0.16) Constipation Diarrhea -0.08(-0.30, 0.13)-0.21(-0.42, 0.01)Financial difficulties EORTC QLQ-MY20 Disease symptoms -0.19(-0.40, 0.03)Side effects of treatment -0.71 (-0.93, -0.49) 5 10 15 -20 -15 -10 -5 0 -25 20 25

Favors ide-cel

Favors standard regimens

HRQOL in KARMMA-3

- Ide-cel outperforms SOC options in most domains
- Well tolerated infusion, prolonged off-therapy duration
- Caveat: unblinded assessments

Delforge ASCO 2023 abst # 8032

Late Breaking Abstract 106: CARTITUDE 4

Dhakal, ASCO 2023 Abst #LBA4

CARTITUDE 4

- Early progression events in Cilta-cel group
 - Coordination of leukapheresis date is challenging
 - Delayed start of bridging common
 - Logistics of CAR T continue to require work
 - Early referral likely very important
- Despite initial disadvantage, ciltacel still demonstrated clear efficacy advantage

In Context: Cilta-cel vs Ide-cel

CARTITUDE 4: Toxicities

 CARTITUDE 1: most deaths (49%) are from progressive disease (17/35)

-Infections = 8 / 35

- CARTITUDE 4: plurality of deaths (36%) still from progressive disease (14/39)
 - Infection = 90% (9/10 of TEAEs, non-TEAEs not reported)

Lin, ASCO 2023 Abst #8099

Dhakal, ASCO 2023 Abst #LBA4

CARTITUDE 1	Patients (N=97)	Time of death post cilta-cel infusion, days
Total deaths during the study	35	45-980
Due to progressive disease	17	253-980
AEs unrelated to treatment	12	
Pneumonia	2	109; 887
AML ^a	3	418; 582; 718
Ascites ^b	1	445
MDS	1	803
Respiratory failure	3	733; 793; 829
Septic shock and/or sepsis	2	917; 945
AEs related to treatment	6	
Septic shock and/or sepsis	2	45; 162
CRS/HLH	1	99
Lung abscess	1	119
Respiratory failure	1	121
Neurotoxicity	1	247

CARTITUDE 4	Cilta-cel (n=208)	Standard care (n=208)
Deaths, n (%)	39 (18.8)	46 (22.1)
Progressive disease	14 (6.7)	30 (14.4)
Non-treatment-emergent adverse eventa	15 (7.2)	11 (5.3)
Treatment-emergent adverse event	10 (4.8) ^b	5 (2.4)
COVID-19 pneumonia ^b	7 (3.4)	1 (0.5)
Neutropenic sepsis	1 (0.5)	0
Pneumonia	1 (0.5)	0
Progressive multifocal leukoencephalopathy	0	1 (0.5)
Respiratory tract infection	0	1 (0.5)
Septic shock	0	1 (0.5)
Respiratory failure	1 (0.5)°	0
Pulmonary embolism	0	1 (0.5)

CARTITUDE 4: Toxicities

• Motor Neuron Toxicity: Parkinson-like presentation.

- -6 / 97 (6%) patients in CARTITUDE 1 (Martin JCO 2023)
 - 3 died, 1 from parkinsonism, 2 from infections
 - 2 recovered/recovering
 - 1 stable/functioning
- -1 / 208 (0.5%) patients in CARTITUDE 4 (Dhakal ASCO 2023, LBA4)
 - "Lower likely related to patient management strategies implemented to mitigate this risk"
 - Bridging therapy lower tumor burden
 - Excluded patients with significant pre-existing neuropathy
 - Aggressive early management of CRS / ICANS

In Context: Do CAR T cells work better earlier?

- Better than current SOC in terms of PFS and QOL
- Likely updates to label coming
- Progression Free Survival may be a bit better in earlier lines (highlighted)

- Difference doesn't seem dramatic

Around the corner

• Faster manufacturing

- GC012F BCMA/CD19 Dual Targeted FasTCAR-T (Abstract # 8005)
 - 22-36 hour manufacturing time
 - ORR = 100%, MRD- = 83%, median PFS 38 months
- PHE833: BCMA-directed CAR T cell with "T-CHARGE" manufacturing (Abstract # 8004)
 - <2 day manufacturing time, goal vein-to-vein of 10 days
 - ORR = 98%, MRD- = 74%, PFS not reported
- Cilta-cel in NDMM
 - CARTITUDE 5: <u>VRd -> Rd</u> vs <u>VRd -> Cilta-cel</u>
 - CARTITUDE 6: <u>Dara-VRd -> ASCT -> Dara-R</u> vs <u>Dara-VRd -> Cilta-cel -> Dara-R</u>
- GPRC5D CAR T cells (Mailankody NEJM 2022)
 - Prior BCMA therapy: 70% response rate

Bispecific Antibodies: Currently Approved

	FDA Approval	Indication	ORR	DOR (mon)	CRS (GR3+)	ICANS	Step-up
Teclistamab BCMAxCD3	October 2022	>4 prior LOT	63%	18.4	72% (0.6%)	3.0% (0%)	2 doses
Talquetamab GPCR5dxCD3	August 2023	>4 prior LOT	70%	10.2	80% (0%)	9.0% (0%)	2-3 doses
Elranatamab BCMAxCD3	August 2023	>4 prior LOT	58%	NR	58% (0.5%)	3.3% (0%)	2 doses
Leshokin Nat. Med 2023							

UNIVERSITY OF IOWA HEALTH CARE

Chari NEJM 2022

Moreau NEJM 2022

Bispecific Antibodies: New Data

- RedirecTT-1 Trial Results (Cohen ASCO 2023 Abst # 8002)
- Elranatamab in prior BCMA therapy (Nooka ASCO 2023 Abst # 8008)
- Teclistamab in prior BCMA therapy (Firestone ASCO 2023 Abst # 8049)
- Talquetamab Updated (Schinke ASCO 2023 Abst # 8036)

RedirecTT-1

Combination Regimen:

 teclistamab (αBCMA x αCD3)
 telquetamab (αGPRC5d x αCD3)

Cohen ASCO 2023 Abst # 8002

UNIVERSITY OF IOWA HEALTH CARE

Holden Comprehensive Cancer Center

RedirecTT-1

- Combination overall well tolerated
 - Standard CRS/ICANS rates
 - Not different from either agent separately
 - Infections still main side effect
 - Known Talquetamab related skin toxicity / dysgeusia /nail disorders

TEAEª (≥25% overall), n (%)	All dos (N=	e levels =93)	Tec 3.0 mg/kg Q2W + tal 0.8 mg/kg Q2W (n=34)		
	Any Grade	Any Grade Grade 3/4		Grade 3/4	
Nonhematologic TEAEs					
CRS	71 (76.3)	3 (3.2)	25 (73.5)	0	
Dysgeusia ^{b,c}	57 (61.3)	-	16 (47.1)		
Pyrexia	47 (50.5)	2 (2.2)	13 (38.2)	1 (2.9)	
Skin toxicity ^d	50 (53.8)	0	18 (52.9)	0	
Nail disorders ^e	43 (46.2)	0	14 (41.2)	0	
Diarrhea	38 (40.9)	2 (2.2)	14 (41.2)	1 (2.9)	
Cough	36 (38.7)	0	8 (23.5)	0	
Dry mouth	35 (37.6)	0	11 (32.4)	0	
Rash ^f	32 (34.4)	1 (1.1)	10 (29.4)	1 (2.9)	
COVID-19	31 (33.3)	9 (9.7)	14 (41.2)	1 (2.9)	
Pneumonia	25 (26.9)	10 (10.8)	4 (11.8)	2 (5.9)	
Fatigue	24 (25.8)	7 (7.5)	6 (17.6)	2 (5.9)	

Cohen ASCO 2023 Abst # 8002

Holden Comprehensive Cancer Center

RedirecTT-1: Fairly well tolerated

- Standard CRS/ICANS rates
 - Not different from either agent separately
- Infections still main side effect
 - Grade 3-4 in 53%!
- Known Talquetamab related skin toxicity / dysgeusia /nail disorders

TEAEª (≥25% overall), n (%)	All dos (N=	e levels 93)	Tec 3.0 mg/kg Q2W + tal 0.8 mg/kg Q2W (n=34)				
	Any Grade	Grade 3/4	Any Grade	Grade 3/4			
Nonhematologic TEAEs	Nonhematologic TEAEs						
CRS	71 (76.3)	3 (3.2)	25 (73.5)	0			
Dysgeusia ^{b,c}	57 (61.3)	-	16 (47.1)				
Pyrexia	47 (50.5)	2 (2.2)	13 (38.2)	1 (2.9)			
Skin toxicity ^d	50 (53.8)	0	18 (52.9)	0			
Nail disorders ^e	43 (46.2)	0	14 (41.2)	0			
Infections	78 (83.9)	49 (52.7)					
COVID-19	31 (33.3)	9 (9.7)					
Pneumonia	25 (26.9)	10 (10.8)					
Upper respiratory tract infection	11 (11.8)	2 (2.2)					
Nasopharyngitis	8 (8.6)	0					
Rhinovirus infection	8 (8.6)	2 (2.2)					
Oral candidiasis	7 (7.5)	1 (1.1)					
Septic shock	7 (7.5)	6 (6.5) ^b					

Cohen ASCO 2023 Abst # 8002 Holden Comprehensive Cancer Center

RedirecTT-1: Impressive efficacy

- Median PFS 20.9 months
- Responses in 96% of patients

UNIVERSITY OF IOWA HEALTH CARE

 Pts w/ soft tissue plasmacytomas: 86%

Cohen ASCO 2023 Abst # 8002 Holden Comprehensive Cancer Center

RedirecTT-1: What Next?

- Duration of treatment?
 - Is it appropriate to continuously dose?
- Combination vs Sequential?
 - Many benefit from these agents alone
- Encouraging result in extramedullary disease
 - Expansion cohort is accruing... stay tuned

Cohen ASCO 2023 Abst # 8002

Holden Comprehensive Cancer Center

How do we strategically use these agents?

- Multiple agents targeting same antigens (BCMA, GPRC5D)
 – How many bites at the apple?
- Multiple agents reliant on immune fitness
 - Bispecific antibodies
 - -CAR T cells

Order of Operations

- CAR T cells affected by exposure to prior BCMA targeted agents
 - Idecabtagene "Real World" consortium data

Hansen JCO 2023

Holden Comprehensive Cancer Center

Order of Operations

- Impact differs by type of BCMA agent
 - BCMA CAR T works poorly post
 BCMA bispecific
 - BCMA CAR T works well post BCMA CAR T
- Likely to vary by time interval between treatments too

Holden Comprehensive Cancer Center

Elranatamab (BCMAxCD3) in prior BCMA therapy

- A subset of patients permitted to have prior BCMA targeted therapy
 - Magnetis MM-1: 13
 - MagnetisMM-2: 1
 - Magnetis MM-3: 64
 - MAgnetisMM-9: 9

	Patients:
Any prior BCMA	87
Prior ADC	59
Prior CAR-T	36
Both ADC & CAR-T	8

Nooka ASCO 2023 Abst # 8008

Elranatamab (BCMAxCD3) in prior BCMA therapy

UNIVERSITY OF IOWA HEALTH CARE

Holden Comprehensive Cancer Center

Teclistamab (BCMAxCD3) in prior BCMA therapy

- N=23 patients
 - Prior αBCMA ADC: 15
 - Prior αBCMA CAR T: 16
 - Prior αBCMA BiAb: 1
 - Multiple prior: 8
- Prior CAR-T & ADC results a bit worse than BCMA naïve
- Absence of CRS portends treatment failure

Firestone ASCO 2023 Abst # 8008

Talquetamab (GPRC5DxCD3) in prior T cell redirection therapy

- Distinct antigen target (GPRC5D)
 - May overcome antigen loss
- Still reliant on T cell redirection (TCR)
 - Prior TCR exposure allowed (n=51)

	Patients:
Any prior TCR	51
Prior Bispecific	18 (35%)
Prior CAR-T	36 (71%)
Both BsAB & CAR-T	3 (6%)

Talquetamab (GPRC5DxCD3) in prior T cell redirection therapy

Outcome	0.4 mg/kg SC QW (n=143)	Prior TCR (n=51)
mFU, mo	18.8	14.8
mDOR, mo (95% CI)	9.5 (6.7–13.3)	11.9 (4.8–NE)
12-mo DOR rate in patients with ≥CR, %	78.9	80.5
12-mo PFS rate, %	34.9	38.1
12-mo OS rate, %	76.4	62.9

Schinke ASCO 2023 Abst # 8008

Order of Operations

- BCMA antigen generally not lost @ relapse
- Exposure to antigen x CD3 bispecific antibodies vs CAR T cell have distinct immunologic consequences
 - Immune fitness may be better preserved by CAR T cell therapy
 - CAR T therapy before Bispecific therapy may be preferred
- More data needed!

Summary ASCO 2023

- CAR T cell therapy will be given in earlier lines
 - Better efficacy than current SOC
 - QOL may be better than current SOC too
- Many options for bispecific antibodies on market
 - Great efficacy of currently available options
 - Optimal duration of therapy to be determined
 - Optimal combinations to be determined
 - Likely to move in earlier lines in the future
- Sequencing will be increasingly important
 - CAR T before Bispecific for optimal outcomes?

References

- Attal, M., et al. (2019). "Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): a randomised, multicentre, open-label, phase 3 study." <u>The Lancet **394(10214): 2096-2107.**</u>
- Chari, A., et al. (2022). "Talquetamab, a T-cell–redirecting GPRC5D bispecific antibody for multiple myeloma." New England Journal of Medicine 387(24): 2232-2244.
- Cohen, Y. C., et al. (2023). First results from the RedirecTT-1 study with teclistamab (tec)+ talquetamab (tal) simultaneously targeting BCMA and GPRC5D in patients (pts) with relapsed/refractory multiple myeloma (RRMM), American Society of Clinical Oncology.
- Delforge, M., et al. (2023). Health related quality of life (HRQoL) in patients with triple-class-exposed relapsed/refractory multiple myeloma (TCE RRMM) treated with idecabtagene vicleucel (ide-cel) versus standard regimens: Patient-reported outcomes (PROs) from KarMMa-3 phase 3 randomized controlled trial (RCT), American Society of Clinical Oncology.
- Dhakal, B., et al. (2023). First phase 3 results from CARTITUDE-4: Cilta-cel versus standard of care (PVd or DPd) in lenalidomide-refractory multiple myeloma, American Society of Clinical Oncology.
- Dimopoulos, M., et al. (2020). "Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): results from a randomised, multicentre, open-label, phase 3 study." <u>The Lancet **396(10245): 186-197.**</u>
- Dimopoulos, M. A., et al. (2018). "Daratumumab plus lenalidomide and dexamethasone versus lenalidomide and dexamethasone in relapsed or refractory multiple myeloma: updated analysis of POLLUX." <u>Haematologica 103(12): 2088.</u>

References

- Firestone, R., et al. (2023). Evaluating the efficacy of commercial teclistamab in relapsed refractory multiple myeloma patients with prior exposure to anti-BCMA therapies, American Society of Clinical Oncology.
- Hansen, D. K., et al. (2023). "Idecabtagene vicleucel for relapsed/refractory multiple myeloma: real-world experience from the myeloma CAR T consortium." <u>Journal</u> of Clinical Oncology 41(11): 2087-2097.
- Lesokhin, A. M., et al. (2023). "Elranatamab in relapsed or refractory multiple myeloma: phase 2 MagnetisMM-3 trial results." Nature Medicine: 1-9.
- Lin, Y., et al. (2023). CARTITUDE-1 final results: Phase 1b/2 study of ciltacabtagene autoleucel in heavily pretreated patients with relapsed/refractory multiple myeloma, American Society of Clinical Oncology.
- Mailankody, S., et al. (2022). "GPRC5D-targeted CAR T cells for myeloma." <u>New England Journal of Medicine 387(13): 1196-1206.</u>
- Martin, T., et al. (2023). "Ciltacabtagene autoleucel, an anti–B-cell maturation antigen chimeric antigen receptor T-cell therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-year follow-up." Journal of Clinical Oncology **41(6): 1265.**
- Moreau, P., et al. (2021). "Isatuximab, carfilzomib, and dexamethasone in relapsed multiple myeloma (IKEMA): a multicentre, open-label, randomised phase 3 trial."
 <u>Lancet 397(10292): 2361-2371.</u>
- Moreau, P., et al. (2022). "Teclistamab in relapsed or refractory multiple myeloma." New England Journal of Medicine 387(6): 495-505.
- Munshi, N. C., et al. (2021). "Idecabtagene vicleucel in relapsed and refractory multiple myeloma." New England Journal of Medicine 384(8): 705-716.

References

- Nooka, A. K., et al. (2023). Efficacy and safety of elranatamab in patients with relapsed/refractory multiple myeloma (RRMM) and prior B-cell maturation antigen (BCMA)-directed therapies: A pooled analysis from MagnetisMM studies, American Society of Clinical Oncology.
- Rodriguez-Otero, P., et al. (2023). "Ide-cel or standard regimens in relapsed and refractory multiple myeloma." New England Journal of Medicine 388(11): 1002-1014.
- San-Miguel, J., et al. (2023). "Cilta-cel or Standard Care in Lenalidomide-Refractory Multiple Myeloma." <u>New England Journal of Medicine.</u>
- Schinke, C. D., et al. (2023). Pivotal phase 2 MonumenTAL-1 results of talquetamab (tal), a GPRC5DxCD3 bispecific antibody (BsAb), for relapsed/refractory multiple myeloma (RRMM), American Society of Clinical Oncology.

- High risk smoldering myeloma
 - High risk cytogenetics
 - Marrow plasma cells >20%
 - Light chain ratio > 20:1
 - M protein > 2.0 g/dl

Newly Diagnosed Myeloma

-CARTITUDE 5

-CARTITUDE 6

• Likely 2024

Figure: CARTITUDE-5 study design

15tratification factors: R-ISS (I.II.II): Age/transplant eligibility (±70 years or <70 years and ASCT ineligible due to comorbidities or <70 years and ASCT deferred); Response to VRd Induction (±VGPR, ±PR)</p>

*Patients may register any time following induction therapy.

UNIVERSITY OF IOWA HEALTH CARE

Holden Comprehensive Cancer Center

- Relapsed/Refractory
 - Modakafuspalfa
 - CD38-INFa conjugate
 - R/R myeloma, 1-3+ prior lines
 - MagnitisMM 20 (Elranatamab)
 - Elranatamab + Carfilzomib
 - Elranatamab + aCD-47
 - R/R myeloma, 1-3 prior lines
 - Melphalan + High Dose Ascorbic Acid
 - Triple exposed RRMM

Holden Comprehensive Cancer Center

Clinical Trials Coming Soon

- Relapsed/Refractory
 - P-BCMA-CAR-T
 - Allogeneic CAR-T cell product
 - Prior BCMA exposure allowed
 - GC012F
 - BCMA/CD19 dual targeted FasTCAR-T
- Newly Diagnosed, Non-transplant
 - S2209:
 - Dara-Rd -> R maintenance
 - Dara-Rd -> Dara-R maintenance
 - VRd -> R maintenance

