

Iowa Oncology Society 2024 Best of ASCO

Trends in Hematopoietic Cell Transplantation in Acute Myeloid Leukemia from 2004-2020

Aditya Ravindra MD Hematology & Medical Oncology Fellow <u>Mentor:</u> Prajwal Dhakal MD

Holden Comprehensive Cancer Center

Financial Disclosures

This work was supported by clinical research funds from the Holden Comprehensive Cancer Center

Background

Hematopoietic Cell Transplantation in AML

- AML is the most common indication for allogenic HCT
- Allogenic HCT is the only curative therapy for patients with primary refractory AML
- HCT continues to become safer and more accessible

Selected Disease Trends for Allogeneic HCT in the US

Granot, et al. History of hematopoietic cell transplantation: Challenges and progress.

Barriers to HCT

- Despite its benefits in AML, HCT still remains underutilized
 - <u>Biological factors of exclusion</u> age, co-morbidities, AML subtype, race
 - <u>Non-biological factors of exclusion</u> educational status, income, insurance, distance to treatment facility

Pidala J, et al. Practice variation in physician referral for allogeneic hematopoietic cell transplantation

Methods

Study Characteristics

- <u>Purpose</u>: determine the effects of patient and disease characteristics on the odds of receiving HCT in AML
 - Retrospective analysis using data from the National Cancer Database (NCDB)
- Analyzed cohorts based on date of AML diagnosis:
 - 2004-2010
 - 2011-2019
 - 2020 (isolate the confounding effects of COVID-19 on HCT utilization)
- Statistical considerations
 - Logistic regression analysis
 - All statistical testing was two-sided and assessed for significance at the 5% level using SAS v9.4 (SAS Institute, Cary, NC)

Results

HCT Use Over Time

- Out of 82,755 patients with AML, 7,764 (9.3%) received HCT
- HCT use increased from 2004-2020
 - -2004:6.5%
 - 2019: 12.2%
 - 2020: 12%
- From 2011-2019, patients had 42% increased odds of receiving an HCT compared to 2004-2010
 - OR: 1.42 (95% CI: 1.35-1.49)

Age

- HCT use in AML declined with increasing age:
 - 18-40 years: 17.4%
 - 41-59 years: 16.4%
 - 60-70 years: 10%
 - 71-80 years: 1.5%
- The 18-40 age group had 47% higher odds of receiving HCT when compared to the 60-70 age group
 - OR: 0.53 (95% CI: 0.50-0.57)
- Elderly patients were more likely to receive HCT in 2011-2019 vs 2004-2010

Patient 20	Characteristics 004-2019	Odds ratio (95% CI)	р
Age & Year of	41-59 vs 18-40 / 2004-2010	0.79 (0.71-0.87)	p < 0.01
	41-59 vs 18-40 / 2011-2019	0.73 (0.67-0.80)	
	41-59 vs 60-70 / 2004-2010	2.67 (2.38-3.00)	
	41-59 vs 60-70 / 2011-2019	1.36 (1.25-1.47)	
	41-59 vs 71-80 / 2004-2010	31.65 (22.07-45.39)	
	41-59 vs 71-80 / 2011-2019	7.43 (6.40-8.63)	
	60-70 vs 18-40 / 2004-2010	0.29 (0.26-0.34)	
	60-70 vs 18-40 / 2011-2019	0.54 (0.49-0.59)	
	60-70 vs 71-80 / 2004-2010	11.85 (8.21-17.09)	
	60-70 vs 71-80 / 2011-2019	5.48 (4.73-6.35)	
	71-80 vs 18-40 / 2004-2010	0.02 (0.02-0.04)	
	71-80 vs 18-40 / 2011-2019	0.10 (0.08-0.11)	

Age

Patient Characteristics 2020		Odds ratio (95% CI)	р
Age & Year of	41-59	0.89 (0.68-1.68)	p < 0.01
Diagnosis	60-70	0.62 (0.46-0.83)	
	71-80	0.14 (0.09-0.21)	
	81+	0.01 (0.00-0.04)	
	18-40	Reference	

Comorbidities

- Higher Charlson-Deyo comorbidity indices (CCI) predicted lower rates of HCT use
 - 0:11.0%
 - 1:6.2%
 - 2-3: 3.3%
- Patients with a CCI of 0 had 66% increased odds of receiving HCT when compared to indices of 2-3
 - OR: 0.54 (95% CI: 0.50-0.58)
- Patients with higher CCIs were more likely to receive HCT in the 2011-2019 vs 2004-2010

Patient Cha 2004	racteristics -2019	Odds ratio (95% CI)	р
harlson-Deyo &	1 vs 0 / 2004-2010	0.78 (0.69-0.89)	p = 0.03
	1 vs 0 / 2011-2019	0.71 (0.65-0.79)	
	1 vs 2-3 / 2004-2010	2.09 (1.55-2.80)	
	1 vs 2-3 / 2011-2019	1.33 (1.13-1.57)	
	2-3 vs 0 / 2004-2010	0.37 (0.28-0.49)	
	2-3 vs 0 / 2011-2019	0.54 (0.46-0.62)	

Comorbidities

Patient Characteristics 2020		Odds ratio (95% CI)	р
Charlson-Deyo &	1	0.63 (0.47-0.84)	p = 0.03
rear of Diagnosis	2-3	0.57 (0.40-0.82)	
	0	Reference	

Distance to Treatment Centers

- Patients that received an HCT typically had longer travel distances to their treatment centers:
 - 0-4.9 miles: 4.4%
 - 5-11.9 miles: 6.7%
 - 12-34.7 miles: 11%
 - 34.8+ miles: 14.1%
- Patients that traveled 34.8+ miles had significantly greater odds of receiving HCT than patients that live 0-4.9 miles from treatment centers
 - OR: 3.57 (95% CI: 3.29-3.87)
- The odds of receiving HCT increased in patients that live closer to treatment centers in 2011-2019 vs 2004-2010

Patient Characteristics 2004-2019		Odds ratio (95% CI)	р
Distance & Year	5-11.9 miles vs 0-4.9 miles /	1.10 (0.94-1.28)	p < 0.01
of Diagnosis	5-11.9 miles vs 0-4.9 miles / 2011-2019	1.22 (1.08-1.38)	
	5-11.9 miles vs 12-34.7 miles / 2004-2010	0.60 (0.53-0.68)	
	5-11.9 miles vs 12-34.7 miles / 2011-2019	0.73 (0.67-0.81)	
	5-11.9 miles vs 34.8+ miles / 2004-2010	0.35 (0.31-0.40)	
	5-11.9 miles vs 34.8+ miles / 2011-2019	0.53 (0.48-0.58)	
	12-34.7 miles vs 0-4.9 miles / 2004-2010	1.82 (1.58-2.10)	
	12-34.7 miles vs 0-4.9 miles / 2011-2019	1.66 (1.49-1.87)	
	34.8+ miles vs 0-4.9 miles / 2004-2010	3.13 (2.72-3.59)	
	34.8+ miles vs 0-4.9 miles / 2011-2019	2.32 (2.07-2.59)	

Distance to Treatment Centers

Distance	2004-2010	2011-2019	2020
0-4.9 miles	3%	5%	6%
5-11.9 miles	5%	8%	9%
12-34.7 miles	9%	12%	13%
34.8+ miles	13%	15%	17%

Patient Characteristics 2020		Odds ratio (95% CI)	р
Distance & Year of Diagnosis	5-11.9 miles	1.29 (0.88-1.89)	p = 0.03
	12-34.7 miles	1.73 (1.21-2.48)	
	34.8+ miles	2.40 (1.69-3.39)	
	0-4.9 miles	Reference	

Race, Educational Status, Income and Primary Payor

Patient Ch 2004	aracteristics 4-2019	Odds ratio (95% CI)	р
Race	Black	0.60 (0.54-0.67)	p < 0.01
	Other	0.91 (0.81-1.02)	
	White	Reference	
Percent of Missing High	14-19.9%	0.77 (0.72-0.83)	p < 0.01
School Education	20-28.9%	0.68 (0.63-0.74)	
	>= 29%	0.64 (0.58-0.71)	
	< 14%	Reference	
Median Annual Income	\$30,000-\$34,999	1.09 (0.98-1.22)	p < 0.01
	\$35,000-\$45,999	1.30 (1.16-1.45)	
	>= \$46,000	1.51 (1.34-1.70)	
	< \$30,000	Reference	
Primary Payor	Not insured	0.35 (0.29-0.43)	p < 0.01
	Private	1.74 (1.63-1.85)	
	Public	Reference	
These trends did not significantly shange in 2011 2010 vs 2004 2010			

These trends did not significantly change in 2011-2019 vs 2004-2010

Race, Educational Status, Income and Primary Payor

Patient Ch 2	aracteristics 020	Odds ratio (95% CI)	р
Race	Black	0.81 (0.57-1.14)	p = 0.02
	Other	0.58 (0.81-1.02)	
	White	Reference	
Percent of Missing High	5-9%	0.59 (0.44-0.78)	p < 0.01
School Education	9.1-15.2%	0.55 (0.40-0.75)	
	>=15.3%	0.47 (0.33-0.68)	
	<5%	Reference	
Primary Payor	Not insured	0.40 (0.19-0.85)	p < 0.01
	Private	1.87 (1.51-2.32)	
	Public	Reference	

Median annual income was not correlated with odds of receiving HCT in the 2020 cohort

AML Subtype

- Therapy-related AML had the highest rates of HCT
 - Overall study population: 12.8%
 - $\ \ 2004\text{--}2010\text{:}\ 13.5\%$
 - $\ \ 2011 \hbox{--} 2019 \hbox{:} 12.1\%$
 - -2020:20%
- Patients with acute promyelocytic leukemia had the lowest HCT rates
 - Overall study population: 0.4%
 - $\ \ 2004 \hbox{--} 2010 \hbox{:} \ 0.4\%$
 - 2011-2019: 0.3%
 - $-\ \ 2020: 0.5\%$
- The odds of receiving HCT did not significantly change in any AML subtype in 2011-2019 vs 2004-2010

AML Subtypes		Odds ratio (95% Cl)	p-value
2004-2019	Acute Promyelocytic Leukemia	0.02 (0.01-0.03)	p < 0.01
	Core Binding Factor AML	0.48 (0.41-0.55)	
	Therapy-related AML	1.18 (0.81-1.71)	
	Other AML	Reference	
2020	Acute Promyelocytic Leukemia	0.02 (0.00-0.07)	p < 0.01
	Core Binding Factor AML	0.53 (0.35-0.82)	
	Therapy-related AML	1.52 (0.52-1.46)	
	Other AML	Reference	

Discussion

The Positives

- To our knowledge, this is the largest scale analysis on HCT utilization in AML
- The increase in HCT rates from 2004-2020, especially among elderly patients with multiple co-morbidities, may be due to improvements in:
 - Indication models based on molecular techniques
 - Better supportive care and management of complications (graft-versushost disease)
 - Better donor availability (haploidentical donors)
 - Reduced-intensity conditioning regimens

Room for Improvement

- The persistent disparities in HCT rates with respect to economic status and race represent areas warranting further improvement
 - HCT continues to have high direct and indirect (transportation, temporary housing, travel distance) costs
 - There are few studies looking at improving cost-effectiveness of HCT
 - Varying out-of-pocket costs for insurances that offer coverage for HCT $^{\circ}$
 - Racial differences in HLA-typing can contribute to disparities in donor availability⁷

Similar Studies

- D'Souza et al (2020)
 - Retrospective analysis of 2018 CIBMTR data on all disease types with HCT indications
 - Found increased rates of HCT utilization (allogenic and autologous) primarily among patients >70 years old
 - Also found diminished HCT rates among black patients
 - Interestingly, the use of haploidentical donors has improved allogenic HCT rates in minorities
 - 21% of HCT involving black patients have haploidentical donors compared to 4.6% from other unrelated donors

Similar Studies

- Tokaz et al (2022)
 - Retrospective analysis of Worldwide Network for Blood & Bone Marrow Transplantation data on AML (2009-2016)
 - Rates of HCT in AML continue to increase globally across all age groups
 - Despite this, economic disparities are still predictive of HCT utilization even in resource poor countries

Acknowledgements

- Contributing Authors:
 - Dr. Prajwal Dhakal
 - Bradley Loeffler
 - Dr. Ustav Joshi
 - Dr. Uttam Bhetuwal
 - Dr. Shiwani Sharma
 - Dr. Vijaya Raj Bhatt
 - Avantika Pyakuryal
- Holden Comprehensive Cancer Center
- ASCO Conquer Cancer Foundation

References

- 1. Granot, *et al.* History of hematopoietic cell transplantation: Challenges and progress. Haematologica. 10.3324/haematol.2019.245688.
- 2. Pidala J, et al. Practice variation in physician referral for allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2013 Jan;48(1):63-7.
- 3. Döhner H, *et al.* Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood. 2022 Sep 22;140(12):1345-1377
- 4. Snowden JA *et al.* European Society for Blood and Marrow Transplantation (EBMT). Indications for haematopoietic cell transplantation for haematological diseases, solid tumours and immune disorders: current practice in Europe, 2022. Bone Marrow Transplant. 2022 Aug;57(8):1217-1239
- 5. Esther N. Oliva, *et al.* The Real-World Incidence of Relapse in Acute Myeloid Leukemia (AML): A Systematic Literature Review (SLR). *Blood* 2018; 132 (Supplement 1): 5188
- 6. Preussler JM, *et al.* Costs and cost-effectiveness of hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2012 Nov;18(11):1620-8
- 7. D'Souza A, et al. Current Use of and Trends in Hematopoietic Cell Transplantation in the United States. Biol Blood Marrow Transplant. 2020 Aug;26(8):e177-e182. Muffly L, et al.: Increasing use of allogeneic hematopoietic cell transplantation in patients aged 70 years and older in the United States. Blood 130:1156–1164, 2017
- 8. Tokaz MC, *et al.* An Analysis of the Worldwide Utilization of Hematopoietic Stem Cell Transplantation for Acute Myeloid Leukemia. Transplant Cell Ther. 2023 Apr;29(4):279.e1-279.e10.

Questions?

⇒

Thank you

→