The Role of Radiation Therapy Along the Continuum of Prostate Cancer

Brad Stish, MD

Assistant Professor

Department of Radiation Oncology, Mayo Clinic-Rochester MN

Research Funding-Varian

Disclosures

Overview

- Radiation therapy for localized prostate cancer
- Radiation Therapy in post-operative biochemically recurrent prostate cancer
- •Radiation Therapy as treatment for oligometastatic prostate cancer
- Radiation Therapy's role in de novo, metastatic prostate cancer

Radiation vs. Surgery for Localized Prostate Cancer

- PROTECT study randomized 1643 patients to active surveillance vs. radical prostatectomy vs. radiation therapy + and rogen deprivation therapy
- Findings
 - No difference prostate cancer specific deaths between groups
 - More men developed metastases in the active surveillance group compared to RP and XRT groups
 - Definitive treatment had more upfront impact on bladder, bowel, and sexual QOL
 - Global measures regarding QOL were similar between groups
- Takeaways
 - There was NO difference in oncologic outcome between the surgery and radiation arms
 - QOL differences experienced by patient differ according to treatment modality
 - Patients with localized prostate cancer should receive counsel regarding BOTH modalities to facilitate informed decision making

Radiation-Technique

- cancer
- These include:
 - Photon (or X-ray) therapy
 - of care
 - Proton Beam Therapy
 - Charged particle therapy is currently available at 40 centers in US
 - Has unique physical properties compared to photon therapy
 - Brachytherapy
 - Implantation of radiation sources directly into the prostate
 - Both temporary (High Dose Rate or HDR) and permanent (Low Dose
 - Rate or LDR) brachytherapy treatments can be used for prostate cancer • Heavy Ion Therapy
 - Not available in US currently, but centers are active in Europe and Asia • Carbon Ion Therapy is mostly common amongst this group

 - Unclear role for prostate cancer moving forward

• In 2023, multiple techniques are available to deliver therapeutic doses of radiation therapy for localized prostate

• Intensity Modulated Radiation Therapy (IMRT) is the current standard

• Widely available and most utilized

Radiation-Dose and Fractionation

- When it comes radiation dose and fractionation (dose per treatment) for patients receiving external beam treatments (i.e. photons or protons) the recent trends have supported shorter treatment courses
- SBRT (stereotactic body radiation therapy) is the fastest growing technique worldwide and use 5-7 treatments delivered over 10-20 days
- NCCN guidelines currently support multiple reasonable options across the risk spectrum

Regimen	Prefe
EBRT	
Moderate Hypofractionation (Preferred)	
Conventional Fractionation	
Ultra-Hypofractionation	
Brachytherapy Monotherar	<u> </u>
L DR	
lodine 125 Palladium 103 Cesium 131	
HDR	
Iridium-192	9.
EBRT and Brachytherapy (combi
LDR lodine 125 Palladium 103 Cesium 131	
HDR Iridium-192	

	NCCN Risk Group (✓ indicates an appropriate regimen option if radiation therapy is given)						
erred Dose/Fractionation	Very Low and Low	Favorable Intermediate	Unfavorable Intermediate	High and Very High	Regional N1	Low	
	·						
3 Gy x 20 fx 2.7 Gy x 26 fx 2.5 Gy x 28 fx	~	~	~	~	~		
2.75 Gy x 20 fx							
1.8-2 Gy x 37-45 fx	~	×	×	×	×		
7.25–8 Gy x 5 fx 6.1 Gy x 7 fx	~	~	~	~			
6 Gy x 6 fx							
145 Gy 125 Gy 115 Gy	~	~					
13.5 Gy x 2 implants .5 Gy BID x 2 implants	~	~					
ned with 45–50.4 Gy x 25	-28 fx or 37.	5 Gy x 15 fx)					
110–115 Gy 90–100 Gy 85 Gy			~	~			
15 Gy x 1 fx 10.75 Gy x 2 fx			~	~			

/ Volume M1 ^a
×

Proton Beam Therapy vs Photons (IMRT)

Proton Beam Therapy vs Photons (IMRT) Photons (IMRT) Protons

- 100.0

97.5

0.0

87.5

82.5

80.0

Proton vs. Photon Comparison, Brad Stish, October 2023

Proton Beam Therapy vs Photons (IMRT) Protons Photons (IMRT)

Proton vs. Photon Comparison, Brad Stish, October 2023

Proton Beam Therapy vs Photons (IMRT) Photons (IMRT) Protons

Proton vs. Photon Comparison, Brad Stish, October 2023

Photons (IMRT) vs Proton Beam Therapy

Clinical Data

- •Prospective data are lacking
 - next 2-3 years

Primary endpoints focus on toxicity/QOL •Retrospective data are mixed, but suggest no significant advantage for protons (and possible detriment)

Table 1 Current proton versus photon therapy comparative evidence for localized prostate cancer

Study	Design	Source of data	Years	Toxicities: Protons compared to photons					
				Acute		Late ^a			
				GU	GI	Sexual	GU	GI	Sexual
Kim 2011 ⁵⁰	Database	SEER	1992-2005	NA	t	NA	NA	1	NA
Sheets 2012 ^{51b}	Database	SEER	2000-2009	NA	NA	NA	=	1	=
Yu 2012 ⁴⁸ c	Database	Medicare	2008-2009	Ļ	=	NA	=	=	NA
Pan 2018 ^{52d}	Database	MarketScan	2008-2015	Ļ	=	Ļ	1	† I	Ļ
Gray 2013 ^{53e}	Non-randomized comparative	MGH PROST-QA Harvard-affiliated ^f	2003-2008	↓/↑	↓/ =	NA	=	=	NA
Hoppe 2014 ⁵⁶	Non-randomized comparative	UF PROST-QA	2003-2010	=	<u>=</u> g	=	=	<u>_</u> 8	=
Fang 2015 ⁵⁴	Non-randomized comparative	University of Pennsylvania	2010-2012	=	=	NA	=	=	NA

SEER Surveillance, Epidemiology, and End Results, MGH Massachusetts General Hospital, PROST-QA Prostate Cancer Outcomes and Satisfaction with Treatment Quality Assessment Consortium, UF University of Florida, GI Gastrointestinal, GU Genitourinary, NA not available en 10 m

•One randomized trial and one large, non-randomized trial will report in the

Let's not forget about brachytherapy

- or proton beam therapy
- Intraprostatic dose escalation from brachytherapy is superior to other techniques
- sessions

• Brachytherapy allows superior dose conformality and normal tissue sparing compared to either IMRT

• Brachytherapy is highly convenient and cost effective for patients, with treatment completed in 1-2

Definitive Treatment of High Risk (M0) Prostate Cancer

•Risk group categorization greatly influences prostate cancer specific mortality risk NCCN **STAR-CAP**

Improving Outcomes in High Risk Prostate Cancer •What can influence PCSM in high risk, non-metastatic prostate cancer

- patients?
 - •Randomized data have shown-
 - Adding XRT to long-term ADT improves survival

Mason MD, et al. JCO 2015;33(19):2143-50.

- •What can influence PCSM in high risk, non-metastatic prostate cancer patients?
 - •Randomized data have shown-Radiation dose escalation DOES NOT improve survival

HR indicates hazard ratio.

•What can influence PCSM in high risk, non-metastatic prostate cancer patients?

•Randomized data have shown-

Adding long-term ADT to XRT improves overall survival

No. at Risk

•**STAMPEDE Strikes Again!**

- 1974 men with non-metastatic very high risk prostate cancer randomly assigned to XRT + ADT (3 years) vs XRT + ADT + abiraterone (2 years)
- •Very High Risk required at least TWO of:
 - •T3/T4 tumor
 - •Grade Group 4-5 (Gleason 8-10)
 - •PSA \geq 40 ng/ml

- Do STAMPEDE data translate to standard NCCN high risk patients?
- •Do ALL high risk patients need treatment escalation or can some have similar outcomes with less intense ADT?
- Prospective studies are underway to determine if systemic therapy can be personalized

Advancing Research. Improving Lives.™

NRG Oncology Four Penn Center 1600 JFK BLVD Suite 1020 Philadelphia, PA 19103 Nrgoncology.org

NRG-GU009: PARALLEL PHASE III RANDOMIZED TRIALS FOR HIGH RISK PROSTATE CANCER EVALUATING DE-INTENSIFICATION FOR LOWER GENOMIC RISK AND INTENSIFICATION OF CONCURRENT THERAPY FOR HIGHER GENOMIC RISK WITH RADIATION (PREDICT-RT*) *Prostate RNA Expression/Decipher To Individualize Concurrent Therapy with Radiation

> ClinicalTrials.gov Identifier NCT# 04513717 NCI Version Date: (September 24, 2021)

> > Principal Investigator: Paul Nguyen, MD Dana-Farber/Brigham and Women's Radiation Oncology 75 Francis St Boston, MA

Recurrent Prostate Cancer After Definitive Treatment

- Management of biochemically recurrent/progressive prostate is a rapidly evolving field
- •The development of novel PET imaging has allowed earlier anatomical localization of disease sites
- Enthusiasm for metastasis-directed therapy has grown simultaneously, but what is its real role in clinical care?

Adjuvant vs. Salvage Radiation

- Data supporting meaningful improvements in patient outcomes following radiation therapy to the prostate fossa +/- pelvic lymph nodes are plentiful
- Recent randomized trials have shown that adjuvant radiation therapy for those with high-risk features (pT3/pT4, + margins) provides no oncologic advantage over early salvage radiation therapy but does increase toxicity

PRO (higher scores are worse) Urinary Bochemical Bowel

Salvage Radiation Remains an Important Tool for **Treating Recurrent Prostate Cancer**

- Data supporting meaningful improvements in patient outcomes following radiation therapy to the prostate fossa +/pelvic lymph nodes are plentiful
- Early salvage radiation (preradiotherapy PSA < 0.5 ng/ml) significantly improves outcomes compared to "Late" salvage radiation

0.51-1.00 ng/mL 533 419

319

238

PSMA PET Imaging Prior to Salvage

- •PSMA PET is a useful tool for initial biochemical recurrence
 - Waiting to invoke salvage RT until local recurrence is **NOT** yet standard of care and may jeopardize outcomes
 - Recall PET resolution is limited to around 4 mm
 - Salvage XRT works BEST in PET negative patients!

PSMA PET Result Stratified by Increasing PSA Level					
PSA (ng/mL)	PSMA PET- negative	PSMA PET- positive	Overall		
<0.2	41 (49.4%)	42 (50.6%)	83		
0.2-0.5	36 (34.9%)	67 (65.1%)	103		
0.51-0.99	9 (27.3%)	24 (72.7%)	33		
1.0-5.0	4 (9.8%))	37 (90.2%)	41		
Total	90 (34.6%)	170 (65.4%)	260		

TABLE 3

Emmett L, et al. *The Journal of Nuclear Medicine* 2020: 61(6).

Outcomes following salvage radiation, based on pre-salvage RT PET findings

PSMA PET Imaging-Interpret With Care

- •PSMA is a useful tool for initial biochemical recurrence
 - Be VERY CAREFUL to carefully evaluate small rib lesions on PSMA PET as false positives are common
 - True determination of rib lesions (biopsy confirmation or positivity on another imaging modality) can be challenging.
 - Consider pre-test probability and sometimes empiric treatment is reasonable
 - •Other sites frequently cited for false positives:
 - Excreted urine near bladder
 - Ureters
 - Nerve ganglia in paraspinal/presacral regions

Benign PSMA-avid solitary rib lesions

In all, 61 men (98.4%) with solitary rib lesions on pretreatment ⁶⁸Ga-PSMA PET/CT scans satisfied the criteria for benign lesions (Table 2). Follow-up ⁶⁸Ga-PSMA PET/CT scans were not routinely performed and only three patients had follow-up ⁶⁸Ga-PSMA PET/CT scans due to clinical suspicion.

Oligometastatic Prostate Cancer

A De-novo oligometastatic disease

Synchronous oligometastatic disease

 T0: first time diagnosis of primary cancer (green) and oligometastases (red) within 6 months

•Definitions are important •And evolving!

Metachronous oligorecurrence

- T-X: diagnosis and treatment of primary cancer (green) in a non-metastatic state
- Systemic therapy-free interval
- T0: First time diagnosis of new oligometastases (red) >6 months after diagnosis of cancer

Metachronous oligoprogression

- T-X: diagnosis and treatment of primary cancer (green) in a non-metastatic state
- Under treatment with active systemic therapy
- T0: first time diagnosis of new oligometastases (red) >6 months after diagnosis of cancer

Guckenberger M et al. Lancet Oncol 2020. 21(1): e18-e28.

B Repeat oligometastatic disease

Repeat oligorecurrence

- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Systemic therapy-free interval
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases

- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Under treatment with active systemic therapy
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases

Repeat oligopersistence

- T-X: diagnosis of oligometastases followed by local treatment or systemic treatment or both
- Under treatment with active systemic therapy
- T0: diagnosis of persistent non-progressive (red) oligometastases

C Induced oligometastatic disease

Induced oligorecurrence

- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment Systemic therapy-free interval
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases, possible residual non-progressive metastases (black)

Induced oligoprogression

- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment
- Under treatment with active systemic therapy
- T0: diagnosis of new (blue) and growing or regrowing (red) oligometastases, possible residual non-progressive metastases (black)

Induced oligopersistence

- T-X: diagnosis of polymetastatic metastatic disease followed by systemic treatment with or without local treatment
- Under treatment with active systemic therapy
- T0: diagnosis of persistent non-progressive oligometastases (red), where response is worse compared with other residual metastases (black)

Repeat oligoprogression

Metastasis-Directed Therapy to Delay ADT

- •STOMP and ORIOLE were two prostate-specific studies of metastasisdirected therapy (MDT) in patients with oligometastatic prostate cancer
- Both showed that MDT could delay progression and initiation of ADT
- •However, the benefit of MDT with regards to more definitive oncologic outcomes remains to be proven

Fig 2. Kaplan-Meier plot comparing androgen deprivation therapy (ADT)-free survival of surveillance versus metastasis-directed therapy (MDT) for (A) the intention-to reat analysis and (B) the per-protocol analysis. HR, hazard ratio; Surv., surveillance

CLINICAL ONCOLOGY

Metastasis-Directed Therapy to Supplement ADT

•EXTEND Study

- Randomized Comparison in Oligometastatic Prostate Cancer
- Intermittent ADT vs Intermittent ADT + MDT
- Progression Free Survival and Eugonadal PFS both significantly improved with addition of MDT
- •MDT also improved serum markers of immune activation

Metastasis-Directed Therapy-More Data Coming

- •We must be aware that there really is no standard of care defined for biochemically recurrent, oligometastatic prostate cancer detected by PET imaging
- •Thus, equipoise exists to evaluate the role of MDT in lieu of ADT in these patients
- •Current NCCN guideline endorse MDT as an option for patient with oligometastatic prostate cancer

NRG-GU011 **SCHEMA**

Recurrent Oligometastatic Prostate Cancer (detected by PET) after RT to Prostate or Radical Prostatectomy +/- Post-Operative Radiotherapy

STRATIFY

- Extrapelvic node(s) <u>only</u> vs Bone +/- node(s) [pelvic/extrapelvic]
 - PSA Doubling Time <12 mos vs ≥ 12mos
 - Fluciclovine PET vs PSMA PET

Radiation Therapy In Lymph Node Positive Prostate Cancer

- In patients with clinical N1 (and some with M1a) prostate cancer, radiation is an important component of treatment that should not be overlooked
- Treatment of extended lymph node volumes is generally well tolerated in the modern era
- Data also strongly support the addition of an ASIR
- •ADT duration of 2 years to indefinite is reasonable

Radiation Therapy In Newly Diagnosed Metastatic Prostate Cancer

- HORRAD and STAMPEDE Arm H results pooled
 - These both included newly diagnosed M1 Pca
 - Arms were ADT vs ADT + RT to prostate
- •Overall survival in entire cohort no different between ADT and ADT+RT
- Interaction of RT was assessed by disease volume.
 - •< 5 metastases vs \geq 5 metastases
 - •**Overall survival** significantly improved with RT
 - •3 year OS=77% vs 70%

Radiation Therapy In Newly Diagnosed Metastatic Prostate Cancer

•Thus, XRT to the primary is listed in NCCN guidelines as a recommendation for low volume M1 patients

- •However, many questions remain:
 - regimens are employed?
 - **PSMA PET era?**
 - Should we consider metastasis-directed therapy in conjunction with prostate only radiation?

•Does this benefit remain when more intensive systemic therapy

•These studies utilized CT/Bone scan staging, what do we do in the

Conclusions

- •Current data support multiple techniques with similar long-term outcomes
- Radiation therapy is an excellent option for most men with localized prostate cancer •There appears to be a role for escalated systemic therapy in some men with high-risk prostate cancer receiving XRT
- •Personalization may be possible, although studies are pending •Radiation plays an important, and potentially curative, role in initial biochemical
- recurrence after radical prostatectomy
 - •Evolving technology may prove to guide patient selection, but this remains outside the current standard of care
- •Current data support prostate radiation therapy in patients with newly diagnosed low volume M+ prostate cancer
 - Future studies will help further define the place of radiotherapy in this rapidly evolving landscape

