# Management of Mantle Cell Lymphoma in the Era of Targeted Therapy

### Nakhle Saba, MD

2023 Louisiana Cancer Congress Friday March 31, 2023 New Orleans, LA

### **Disclosure of Conflicts of Interest**

Nakhle Saba, MD has the following financial relationships to disclose:

- **Consultant**: AbbVie
- **Speaker's Bureau**: AbbVie; Janssen; Pharmacyclics
- Advisory Board: AbbVie; ADC Therapeutics, Janssen, Kyowa Kirin, Pharmacyclics

### Accumulation of mature B-cells aberrantly expressing CD5



Saba et al. ASH 2013. Blood 2013; 122:82 Smedby et al. Semin Cancer Biol. 2011

### **Differential Diagnosis**

|                     | CD5                     | <b>CD20</b>            | <b>CD23</b> | Other                 |
|---------------------|-------------------------|------------------------|-------------|-----------------------|
| CLL                 | +++                     | Weak                   | +++         |                       |
| MCL                 | +++                     | +++                    | Weak        | t(11;14) 	→ Cyclin-D1 |
| CLL, Chi<br>MCL, Ma | ronic Lyn<br>antle Cell | nphocytic L<br>Lymphom | G1 → S      |                       |

### MCL is an aggressive B-cell NHL

|            | Indolent (10%) | Aggressive (90%) |
|------------|----------------|------------------|
| Leuk phase | Yes            | Yes/No           |
| LN         | No             | Yes              |
| Spleen     | Large          | Large            |
| SOX11      | Neg            | Pos              |
| IGHV       | Mutated        | Mut/un-mut       |
| Ki-67      | <10%           | < or ≥ 30%       |

### Lack of CD5 predicts for a better OS in MCL



Soleimani... Saba. Leuk Lymphoma 2022

### MCL is an aggressive B-cell NHL

Yet incurable

# CHOP in the front line setting, pre-Cytarabine and Pre-R era



Dreyling et al. Blood 2005

### **PFS benefit with ASCT**



Dreyling et al. Blood 2005

### **R** improves both **PFS** and **OS**



Adapted from Hoster E, et al. Blood 2008;112(11):3049.

New standard:

### **R-CHOP followed by ASCT.**

### What can we add to RCHOP to improve induction?

**Era of Cytarabine:** 

- DHAP/RCHOP: MCL YOUNGER Trial
- Hyper-CVAD: MDACC
- NORDIC: MCL2 trial

### The era of Cytarabine: "MCL YOUNGER" trial



Primary endpoints: PFS and OS

Hermine et al. The Lancet, 2016

### MCL YOUNGER, Outcomes



Best durable responses are seen with ARA-C

ASCT does not compensate for the inferior response rates observed with R-CHOP alone

Vore from randomication

The new standard in young and fit:

HiDAC containing induction regimen followed by ASCT

Hermine et al. The Lancet, 2016

## What should we add to Cytarabine and Rituximab to improve outcomes, add MTX?

HyperCVAD/MTX-Ara-C?





Romaguera et al. JCO 2005

## What should we add to Cytarabine and Rituximab to improve outcomes?

### HyperCVAD?

Table 1. Selective prospective studies of intensive frontline therapies in newly diagnosed MCL

| Phase              | Induction     | Consolidation  | N   | OR (CR), % | Median response  | Median OS    | TRM   | Reference                    |
|--------------------|---------------|----------------|-----|------------|------------------|--------------|-------|------------------------------|
| II (Single Centre) | R-Hyper-CVAD  | _              | 97  | 97 (87)    | 22% 15 years FFS | 33% 15 years | 8%    | Chihara et al <sup>1</sup>   |
| II (Multi Centre)  | R-Hyper-CVAD  | _              | 60  | 83 (72)    | 61% 5 years PFS  | 73% 5 years  | 6.50% | Merli et al <sup>6</sup>     |
| II (Multi Centre)  | R-Hyper-CVAD  | _              | 49  | (86 (55)   | 4.8 years PFS    | 6.8 years    | 2%    | Bernstein et al <sup>7</sup> |
| III (Randomized)   | R-CHOP        | Dexa BEAM ASCT | 455 | 98 (63)    | 3.8 years PFS    | 6.8 years    | 4%    | Hermine et al <sup>5</sup>   |
|                    | VS            |                |     | VS         | VS               | VS           |       |                              |
|                    | R-CHOP/R-DHAP | ASCT           |     | 99 (61)    | 7.3 years PFS    | NR           |       |                              |

Non-reproducible Non-randomized High TRM, especially in >65 MTX is not needed for MCL

### The Nordic group: MCL2 trial

R-Hyp- VAD // Ara-C **Maxi-CHOP** 

Eskelund et al. bjh 2016

### The Nordic group: MCL2 trial, N = 159



### Cytarabine is a must, MTX is not needed. Do we need CHOP?

### The LyMa trial

Since Cytarabine is a must, can we do RDHAP alone? Does rituximab maintenance improve OS post ASCT?



- Patients who did not achieve ≥PR after DHAP could receive 4 additional courses of R-CHOP
- Primary endpoint: Event-free survival (EFS) at 4 years after randomization

R-CHOP was administered in 20 patients who had an insufficient response after R-DHAP, and 10 of these patients proceeded to transplantation



Le Gouill et al, NEJM 2017

### BR Vs. HyperCVAD: S1106 trial

- Phase II, randomized,
- 6xBR or 4xRHyperCVAD, ASCT
- Terminated early due to poor mobilization with HyperCVAD
- N=53 (planned 160)





- Cytarabine is a must, CHOP is needed with it
- MTX is not needed
- BR is very promising

## Frontline therapy for older patients

- CHOP-R
- BR
- R-BAC

### **CHOP-R vs. BR: STiL Trial**



Rummel et al. The Lancet 2013

### **CHOP-R vs. BR: BRIGHT Trial**

**BRIGHT:** Prospective, randomized, phase III, non-inferiority, N=67, CHOP-R/CVP-R vs. BR, <u>WITHOUT</u> maintenance R or ASCT

|                             |             | CR           | CR + part     | partial response |
|-----------------------------|-------------|--------------|---------------|------------------|
| Histologic subtype, n/N (%) | BR          | R-CHOP/R-CVP | BR            | R-CHOP/R-CVP     |
| Indolent NHL                | 49/178 (28) | 43/174 (25)  | 173/178 (97)  | 160/174 (92)     |
| Follicular                  | 45/148 (30) | 37/149 (25)  | 147/148 (>99) | 140/149 (94)     |
| Marginal zone               | 5/25 (20)   | 4/17 (24)    | 23/25 (92)    | 12/17 (71)       |
| Lymphoplasmacytic           | 0/5         | 1/6 (17)     | 3/5 (60)      | 6/6 (100)        |
| MCL                         | 17/34 (50)  | 9/33 (27)*   | 32/34 (94)    | 28/33 (85)*      |

\*R-CHOP, n = 22.

Small trials No maintenance R, no consolidation ASCT Difficult to definitively recommend R-CHOP or BR

Flinn et al. Blood 2014

### **CHOP-R:** R maintenance is effective

Prospective, randomized phase III, N=560, age>60, CR/PR followed by R or INF





Kluin-Nelemans et al. NEJM 2012

### R maintenance after BR? StiL NHL7-2008 MAINTAIN trial



Rummel M, et al. ASCO 2016

### CHOP-R + R maintenance = BR???



Rummel et al. The Lancet 2013

### **RBAC500:** Phase 2 Study from the Fondazione Italiana Linfomi



Visco et al. The Lancet Hematology 2017 Tisi et al. ASH 2021

## **Novel Agents**

### Survival pathways in MCL



Saba & Wiestner. Curr Opin Hematol. 2014

## **Novel Agents**

| Single Agent | ORR (%) | CR (%) |
|--------------|---------|--------|
| Bortezomib   | 33      | 8      |
| Temsirolimus | 22      | 2      |
| Lenalidomide | 28      | 8      |
| Ibrutinib    | 68      | 21     |
| Venetoclax   | 75      | 21     |

Head-to-head studies between these regimen are lacking. Therefore, direct comparisons cannot be made.

### The BCR signaling pathway



Saba & Wiestner. Curr Opin Hematol. 2014

### Ibrutinib, Phase 1 in Relapsed/Refractory Lymphomas



Advani et al, JCO 2012

## Lymph node-resident cells display higher BCR activity than cells in blood



Saba et al. Blood 2016

### Ibrutinib, Phase 2 in R/R MCL

• ORR 68%, CR 21%



Wang et al, NEJM 2013

### Ibrutinib, Phase 2 in R/R MCL

• ORR 68%, CR 21%



Wang et al, NEJM 2013

• ORR 32%, CR 8%



Goy et al, Ann Oncol. 2009

### Ibrutinib, Phase 2 in R/R MCL

• ORR 68%, CR 21%



Wang et al, NEJM 2013

• ORR 28%, CR 7.5%



Goy et al, JCO 2013

### Covalent single agent BTKi activity in R/R MCL

| BTKi        | Phase | Ν   | #PT | Resp. Criteria | ORR (CR) | mPFS (mo) | mOS (mo) |
|-------------|-------|-----|-----|----------------|----------|-----------|----------|
| <u>Ibr</u>  | 2     | 111 | 3   | Cheson (2007)  | 68 (21)  | 13.9      | 22.5     |
| <u>Acal</u> | 2     | 124 | 2   | Lugano (2014)  | 81 (48)  | 22        | 59       |
| <u>Zanu</u> | 2     | 86  | 2   | Lugano (2014)  | 84 (78)  | 33        | N/R      |
| Orela       | 2     | 106 | NR  | Lugano (2014)  | 88 (28)  | NR        | NR       |

Head-to-head studies between these regimen are lacking. Therefore, direct comparisons cannot be made.

Wang et al. NEJM 2013; Le Gouill et al. EHA 2022; Song Y, et al. Blood. 2022; Song et al. ASH 2020

## Ibrutinib in R/R MCL: 3.5-year follow-up, N=370 pooled from phase II PCYC-1104 and SPARK, phase III RAY: Line of therapy matters.



Rule et al. Hematologica 2019

## Strength of BCR signaling is associated with resistance to chemotherapy in MCL



Saba et al. Blood 2016

## Ibrutinib in combination with chemotherapy in frontline MCL

| Patient status/trial name | Phase | Ν    | Treatment                                                                                          | First outcome | ClinicalTrials.gov |
|---------------------------|-------|------|----------------------------------------------------------------------------------------------------|---------------|--------------------|
| Transplant eligible       |       |      |                                                                                                    |               |                    |
| TRIANGLE                  | 3     | 870  | $R$ -CHOP/ $R$ -DHAP $\rightarrow$ ASCT                                                            | EFS           | NCT02858258        |
|                           |       |      | R-CHOP + ibrutinib/R-DHAP → ASCT + ibrutinib<br>maintenance                                        |               |                    |
|                           |       |      | $R-CHOP + ibrutinib/R-DHAP \rightarrow ibrutinib maintenance$                                      |               |                    |
| EA4151                    | 3     | 689  | Rituximab chemotherapy $\rightarrow$ MRD                                                           | OS            | NCT03267433        |
|                           |       |      | MRD positive: ASCT + rituximab maintenance                                                         |               |                    |
|                           |       |      | MRD negative: ASCT + rituximab maintenance vs<br>rituximab maintenance                             |               |                    |
| Transplant ineligible     |       |      |                                                                                                    |               |                    |
| E1411                     | 2     | 332  | Bendamustine-rituximab $\rightarrow$ rituximab maintenance                                         | PFS           | NCT01415752        |
|                           |       |      | Bendamustine-rituximab → rituximab-lenalidomide<br>maintenance                                     |               |                    |
|                           |       |      | Bendamustine, rituximab, and bortezomib (Velcade) $\rightarrow$ rituximab maintenance              |               |                    |
|                           |       |      | Bendamustine, rituximab, and bortezomib (Velcade) $\rightarrow$ rituximab-lenalidomide maintenance |               |                    |
| ▶ SHINE                   | 3     | 523* | Bendamustine-rituximab $\rightarrow$ rituximab maintenance                                         | PFS           | NCT01776840        |
|                           |       |      | Bendamustine-rituximab-ibrutinib → rituximab-ibrutinib<br>maintenance                              |               |                    |

## SHINE: First-line Ibrutinib + BR Followed by R Maintenance in Older Patients With MCL

Multicenter, randomized, double-blind, placebo-controlled phase III trial



- Primary endpoint: investigator-assessed PFS (in ITT)
- Key secondary endpoints: ORR, time to next treatment, OS, safety

Wang et al. NEJM 2022

### **SHINE: Primary Endpoint of Improved PFS was met**



- Median follow-up: 84.7 mo (7.1 yr)
- Ibrutinib + BR and R maintenance showed:
  - Significant improvement in median PFS by 2.3-yr for ibrutinib arm vs the placebo arm (6.7 vs 4.4 years)

ORR,%

CR

PR

- 25% reduction in risk of PD or death

| Median PFS, Mo                                  | lbrutinib +<br>BR     | Placebo<br>+ BR | HR<br>(95% CI)            |
|-------------------------------------------------|-----------------------|-----------------|---------------------------|
| Patients with blastoid/ pleiomorphic histology  | 25.6                  | 10.3            | 0.66<br>(0.32-1.35)       |
| Patients with <i>TP53</i> mutation <sup>†</sup> | 28.8                  | 11.0            | 0.95<br>(0.50-1.80)       |
|                                                 |                       |                 |                           |
| Efficacy Outcome                                | Ibrutinib<br>(n = 26) | + BR<br>1)      | Placebo + BR<br>(n = 262) |

89.7

65.5

24.1

Wang et al. NEJM 2022

85.5

57.6

30.9

### **SHINE: TEAEs of Clinical Interest**

| <b>TEAEs of Interest With</b> | Ibrutinib + I | 3R (n = 259) | Placebo + BR (n = 260) |           |  |
|-------------------------------|---------------|--------------|------------------------|-----------|--|
| BTK Inhibitors, %             | Any Grade     | Grade 3/4    | Any Grade              | Grade 3/4 |  |
| Any bleeding                  | 42.9          | 3.5          | 21.5                   | 1.5       |  |
| Major bleeding                | 5.8           |              | 4.2                    |           |  |
| Atrial fibrillation           | 13.9          | 3.9          | 6.5                    | 0.8       |  |
| Hypertension                  | 13.5          | 8.5          | 11.2                   | 5.8       |  |
| Arthralgia                    | 17.4          | 1.2          | 16.9                   | 0         |  |

• TEAEs of interest with BTK inhibitors typically not treatment limiting

• Other events similar with ibrutinib vs placebo: SPMs, 21% vs 19%; MDS/AML, 2 vs 3 patients

### **TRIANGLE: Study Design**



- R maintenance was added following national guidelines in all 3 trial arms
- Rituximab maintenance (without or with Ibrutinib) was started in 168 (58 %)/165 (57 %)/158 (54 %) of A/A+I/I randomized patients.

- MCL patients
- previously untreated
- stage II-IV
- younger than 66 years
- suitable for HA and ASCT
- ECOG 0-2
- Primary outcome: FFS
- Secondary outcomes:
- Response rates
- PFS, RD
- OS
- Safety

### **Induction Response and Toxicity**

### Grade 3-5 AEs (induction period)



|     | <u>Ibrutinib +/- AutoSCT</u><br>(n=559) | <u>AutoSCT</u><br>(n=272) | <u>P-Value</u> |
|-----|-----------------------------------------|---------------------------|----------------|
| ORR | 98%                                     | 94%                       | p=0.0025       |
| CR  | 45%                                     | 36%                       | p=0.0203       |

The inclusion of Ibrutinib was associated with a modest increase in toxicity during induction, but was associated with a significant improvement in ORR and CR

Dreyling et al. ASH 2022



|        | <u>Ibrutinib + AutoSCT</u><br>(n=292) | <u>AutoSCT</u><br>(n=288) | <u>P-Value</u>               |
|--------|---------------------------------------|---------------------------|------------------------------|
| 3y FFS | 88%                                   | 72%                       | HR 0.52 <i>,</i><br>p=0.0008 |
| 3y OS  | 91%                                   | 86%                       | -                            |

|        | <u>AutoSCT</u><br>(n=288) | <u>lbrutinib</u><br>(n=290) | <u>P-Value</u>       |
|--------|---------------------------|-----------------------------|----------------------|
| 3y FFS | 72%                       | 86%                         | HR 1.77,<br>p=0.9979 |
| 3y OS  | 86%                       | 92%                         | -                    |

AutoSCT failed to show superiority over lbr

- AutoSCT+Ibr is superior to AutoSCT
- Statistical monitoring for the FFS comparison of Auto-SCT+lbr vs. lbr is still ongoing

## Looking Forward: Exciting Agents in Relapsed and Refractory MCL

# Pirtobrutinib in R/R B-cell malignancies (BRUIN): a Phase 1/2 study



- ➢ N=90, all BTKi exposed
- Median on treatment time: 12 months
- > ORR 58% (CR 20%)

Low rates of Grade ≥3 TEAEs:

- ➤ HTN (3%), hemorrhage (2%), a-fib/flutter (1%)
- Discontinuation due to a TRAE: 2%

Wang et al. ASH 2022 Mato et al. Lancet 2021

### ZUMA-2 Phase 2 Brexu-Cel in R/R MCL: Study Design

#### Key Eligibility Criteria

- ≥18 years of age
- Histologically confirmed MCL that was relapsed/refractory to 1-5 prior regimens
- Received prior anthracycline-containing or bendamustine-containing chemotherapy, an anti-CD20 monoclonal antibody, and BTKi therapy

#### Enrollment/Leukapheresis **Optional Bridging Therapy** Dex 20-40 mg PO or IV daily for 1-4 days, or ibrutinib 560 mg PO daily, or acalabrutinib 100 mg PO twice daily **Conditioning Chemotherapy** Primary endpoint: ORR as Flu 30 mg/m<sup>2</sup> IV and Cy 500 mg/m<sup>2</sup> assessed by IRC IV on days -5, -4, -3 Secondary endpoints: DOR, CAR T-Cell Dose PFS, OS, AE incidence, blood CAR T-cell levels, and serum 2×10<sup>6</sup> KTE-X19 cells/kg on day 0 cytokine levels First Tumor Assessment on Day 28

| Patient Character                                                 | N=68                                    |            |
|-------------------------------------------------------------------|-----------------------------------------|------------|
| Median age, years (range)                                         |                                         | 65 (38-79) |
| Intermediate or high risk according to Simplified MIPI, n (%)     |                                         | 38 (56)    |
| Blastoid or pleomorphic morphologic characteristics of MCL, n (%) |                                         | 21 (31)    |
| Median no. of previous therapies                                  |                                         | 3 (1-5)    |
| Previous BTKi<br>therapy, n (%)                                   | Ibrutinib                               | 58 (85)    |
|                                                                   | Acalabrutinib                           | 16 (24)    |
|                                                                   | Both                                    | 6 (9)      |
| Relapsed or<br>refractory<br>disease, n (%)                       | Relapse after ASCT                      | 29 (43)    |
|                                                                   | Refractory to most recent prior therapy | 27 (40)    |
|                                                                   | Relapse after most recent prior therapy | 12 (18)    |
| Disease that<br>relapsed or was<br>refractory to<br>BTKi, n (%)   | Refractory to BTKi therapy              | 42 (62)    |
|                                                                   | Relapse during BTKi therapy             | 18 (26)    |
|                                                                   | Relapse after BTKi therapy              | 5 (7)      |
|                                                                   | Could not take BTKi because of AEs      | 3 (4)      |

### ZUMA-2 Phase 2 Brexu-Cel in R/R MCL: Efficacy

| All Treated Since Pre      | N=68    |         |
|----------------------------|---------|---------|
| ORR, n (%)                 | 62 (91) |         |
|                            | CR      | 46 (68) |
| $P_{aatroopopoo} = n (0/)$ | PR      | 16 (24) |
| bestresponse, n (%)        | SD      | 3 (4)   |
|                            | PD      | 3 (4)   |



Wang M, et al. ASH 2019; Wang M, et al. J Clin Oncol. 2022

### Glofitamab Monotherapy Induces High Complete Response Rates in Patients with Heavily Pretreated R/R MCL

Phillips et al., ASH. 2022

## Study schema

#### **Glofitamab IV administration**

• Fixed-duration treatment: maximum 2 cycles

#### **CRS** mutation

- Obinutuzumab pretreatment
- (1 x 1000mg or 1 x 2000mg)
- C1 step-up dosing
- Monitoring after first dose (2.5mg)

#### **Population characteristics**

- Age ≥18 years
- ≥1 prior systemic therapy
- ECOG PS ≤1





# High response rates with glofitamab monotherapy in patients with R/R MCL



#### All Patients



### Patients with prior BTKi

Phillips et al., ASH. 2022

# Glofitamab monotherapy produces a high CR rate and durable remissions in heavily pretreated MCL

Figure. Duration of response and time on study by glofitamab dosing cohort



CT, computed tomography; Gpt, obinutuzumab pretreatment; SUD, step-up dose.

Phillips et al., ASH. 2022



# Thank you