

MSCO 2022 FALL CONFERENCE

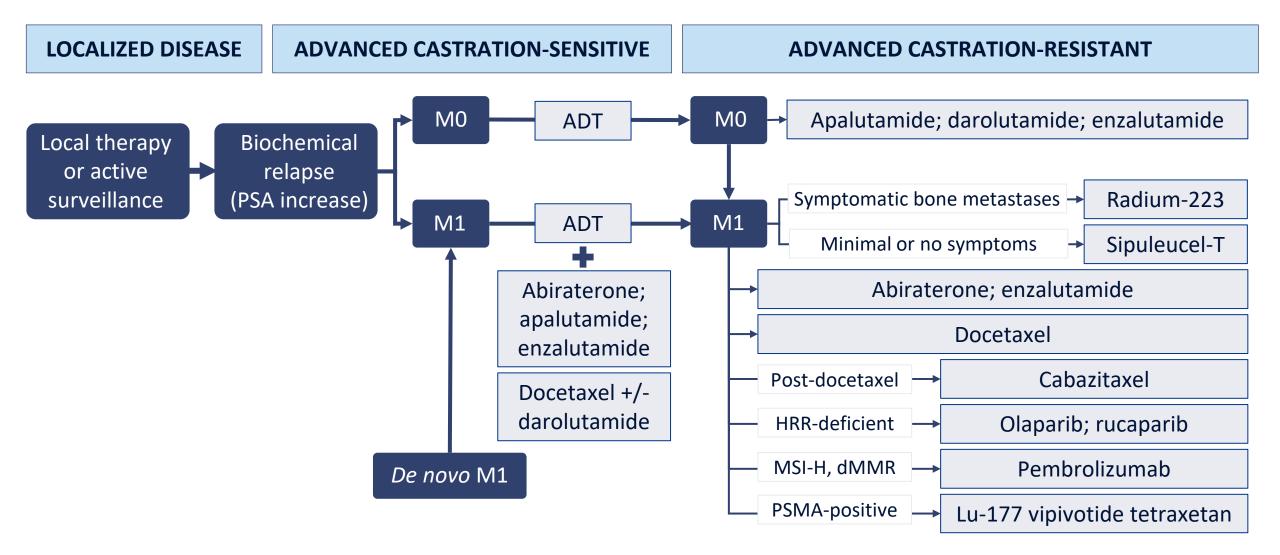
Wed, September 14, 2022 5:30 PM to 8:30 PM (Central Daylight Time)

Minneapolis, MN

PARPi, PD1i, Lu-PSMA and Other New Therapies for Advanced Prostate Cancer

Emmanuel S. Antonarakis, M.D.

Clark Endowed Professor of Medicine Division of HOT, University of Minnesota Associate Director of Translation, Masonic Cancer Center


Disclosures

- Consultant/advisor for: Janssen, Astellas, Sanofi, Dendreon, Bayer, BMS, Amgen, ESSA, Constellation, Blue Earth, Exact Sciences, Invitae, Curium, Pfizer, Merck, AstraZeneca, Clovis, Eli Lilly
- **Grant/research support from:** Janssen, J&J, Sanofi, BMS, Pfizer, AstraZeneca, Novartis, Curium, Constellation, ESSA, Celgene, Merck, Bayer, Clovis
- Inventions/patents: Co-inventor of AR-V7 technology licensed to Qiagen

Outline

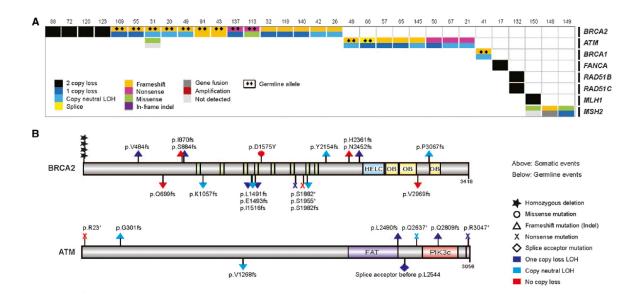
- Current treatment landscape for mCRPC
- PARP inhibitors for HRR-deficient PCa
- PD-1 inhibitors for MMR-deficient PCa
- PSMA-targeted therapies (Lu-PSMA)
- B7-H3-targeted therapies
- Conclusions

Treatment Landscape for Prostate Ca

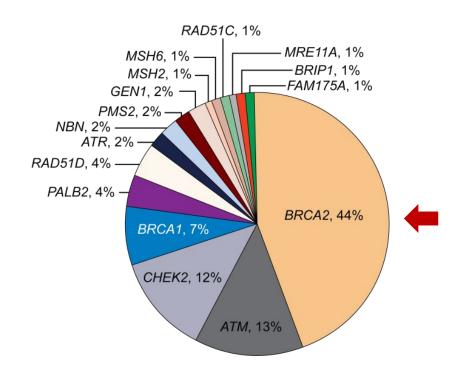
PARP inhibitors for HRR-deficient mCRPC

PARP inhibitors for HRR-mutated mCRPC

OLAPARIB: In May 2020, based on data from the PROfound study, the FDA granted full approval olaparib for the treatment of patients with deleterious or suspected germline or somatic HRR^a gene-mutated mCRPC, who have progressed following prior treatment with enzalutamide or abiraterone^{1,b}

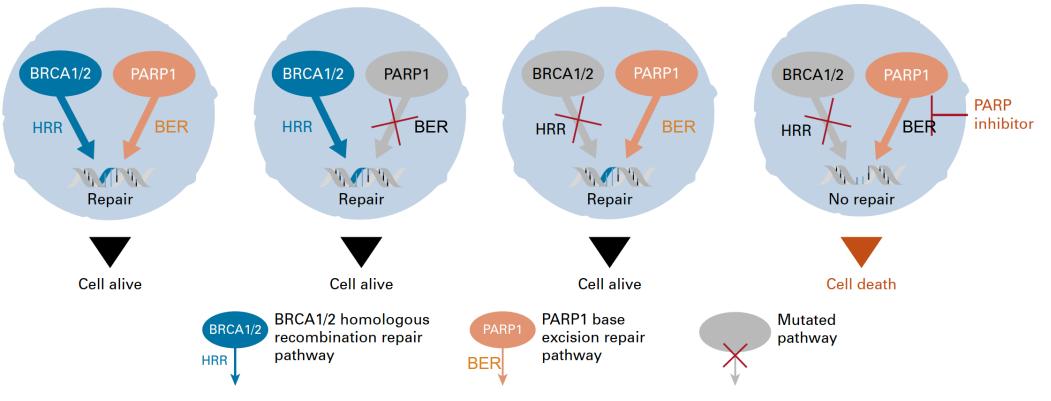

^aBRCA1, BRCA2, ATM, BARD1, BRIP1, CDK12, CHEK1, CHEK2, FANCL, PALB2, RAD51B, RAD51C, RAD51D, RAD54L.
 ^bSelect patients for therapy based on two FDA-approved companion diagnostic tests: BRACAnalysis CDx and FoundationOne CDx.
 1. https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-olaparib-hrr-gene-mutated-metastatic-castration-resistant-prostate-cancer.

<u>RUCAPARIB</u>: In May 2020, based on data from the TRITON2 study, the FDA granted accelerated approval to rucaparib for the treatment of patients with deleterious *BRCA1/2* (germline and/or somatic)associated mCRPC, who have been treated with an androgen receptordirected therapy and a taxane-based chemotherapy.¹


HRR Genes and Metastatic Prostate Cancer

Somatic

- <u>23%</u> of metastatic castration-resistant prostate cancers harbor DNA repair alterations
- The frequency of DNA repair alterations increases in metastatic disease vs. localized disease

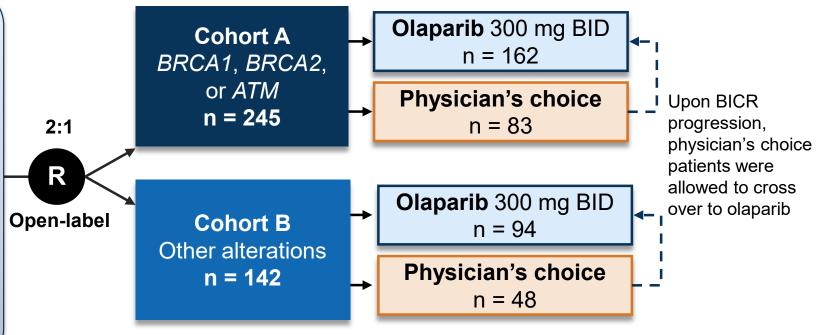


Germline

• <u>12%</u> of men with metastatic prostate cancer have a germline DNA repair defect

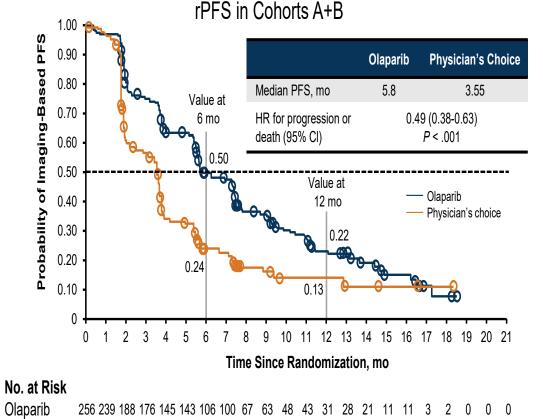
PARP Inhibition: "Synthetic Lethality"

PARP is required for single-strand break repair (e.g. via BER) MOA – inhibiting SSB/BER is synthetic lethal with HRD

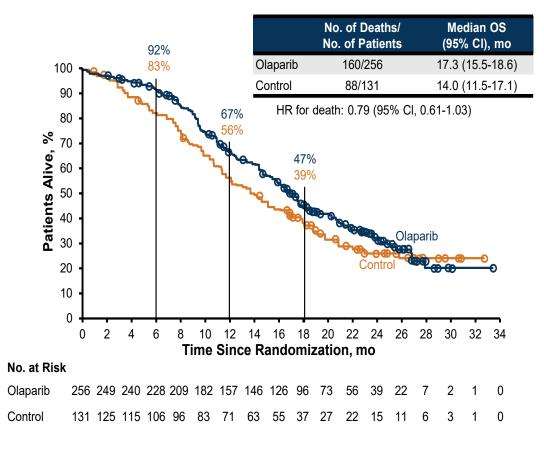

Olaparib: PROfound, Randomized Phase-3 Study

Key Eligibility Criteria

- mCRPC with disease progression on prior NHA (eg, abiraterone or enzalutamide)
- Alterations in ≥1 of any qualifying gene with a direct or indirect role in HRR


Stratification Factors

- Previous taxane
- Measureable disease


- Primary endpoint: rPFS in cohort A (RECIST 1.1 and PCWG3 by BICR)
- Key secondary endpoints: rPFS (cohorts A+B); confirmed radiographic ORR in cohort A; time to pain progression in cohort A; OS in cohort A

PROfound: rPFS and OS in whole population (A+B)

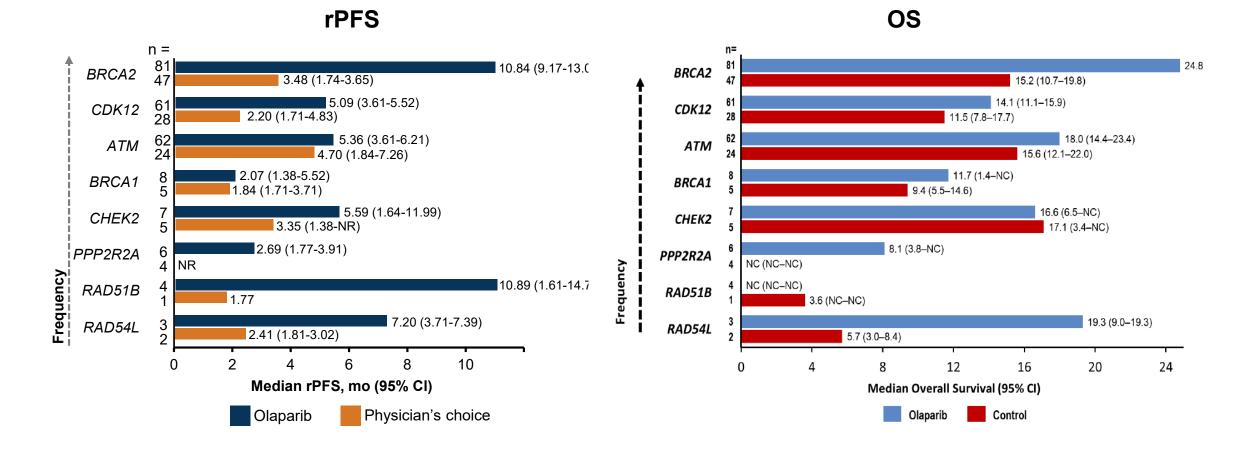
C in Cohorto A I D

OS in the Overall Population (Cohorts A + B)

1. de Bono J et al. *N Engl J Med*. 2020;382:2091-2102. 2. Hussain M et al. *N Engl J Med*. 2020.

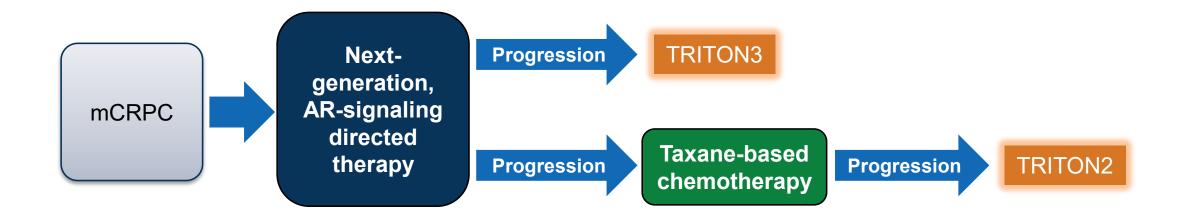
55

131 123 73 67 38 35 20 19 9 8 5


3 3 2

2

0 0


Control

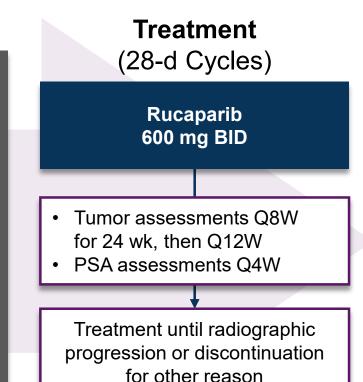
PROfound: Gene-by-gene, rPFS and OS analyses

1. de Bono J et al. N Engl J Med. 2020;382:2091-2102. 2. Hussain M et al. N Engl J Med. 2020.

Rucaparib: TRITON2 and TRITON3 studies

HRR-deficiency is defined by a deleterious alteration in *BRCA1*, *BRCA2*, *ATM*, or 12 other HRR genes (*BARD1*, *BRIP1*, *CDK12*, *CHEK2*, *FANCA*, *NBN*, *PALB2*, *RAD51*, *RAD51B*, *RAD51C*, *RAD51D*, *RAD54L*)

TRITON2: Study design


Screening

Identification of a deleterious somatic or germline alteration in HRR gene^a

HRR Genes BRCA1, BARD1, FANCA, RAD51B, BRCA2, BRIP1, NBN, RAD51C, ATM, CDK12, PALB2, RAD51D, CHEK2, RAD51, RAD54L

Key Eligibility Criteria

- mCRPC
- Deleterious somatic or germline alteration in HRR gene
- Progression on AR-directed therapy (eg, abiraterone, enzalutamide, or apalutamide) and 1 prior taxanebased chemotherapy for CRPC
- ECOG PS 0 or 1
- No prior PARP inhibitor, mitoxantrone, cyclophosphamide, or platinum-based chemotherapy

• **Primary endpoints:** <u>Confirmed ORR</u> per modified RECIST/PCWG3 by central assessment (patients with measurable disease at baseline), confirmed PSA response (≥50% decrease) rate (patients with no measurable disease at baseline)

TRITON2: Objective response rate (ORR)

	DDR Gene				
	<i>BRCA</i> 1/2 (n = 57)	<i>ATM</i> (n = 21)	<i>CDK12</i> (n = 9)	CHEK2 (n = 5)	Other (n = 13)
ORR, n (%) [95% CI]	25 (43.9) [30.7-57.6]	2 (9.5) [1.2-30.4]	0 [0.0-33.6]	0 [0.0-52.2]	5 (38.5) [13.9-68.4]
CR, n (%)	3 (5.3)	0	0	0	1 (7.7)
PR, n (%)	22 (38.6)	2 (9.5)	0	0	4 (30.8)
SD, n (%)	26 (45.6)	10 (47.6)	5 (55.6)	3 (60.0)	6 (46.2)
PD, n (%)	5 (8.8)	8 (38.1)	3 (33.3)	2 (40.0)	1 (7.7)
N/E, n (%)	1 (1.8)	1 (4.8)	1 (11.1)	0	1 (7.7)

Best Change From Baseline in Sum of Target Lesion in Patients With BRCA 1/2 Alteration (N = 56)

1. Abida W et al. ESMO 2019. Abstract 846PD. 2. Abida W et al. Clin Cancer Res. 2020 Feb 21

TRITON3: Study design

Key Eligibility Criteria

- mCRPC •
- Deleterious germline or somatic \bullet BRCA1, BRCA2, or ATM mutation
- **Progression on AR-directed** \bullet therapy in the mCRPC setting
- No prior PARPi treatment or \bullet chemotherapy for mCRPC

Rucaparib 600 mg BID 2:1 Physician's choice (abiraterone, enzalutamide, or docetaxel)

R

Primary endpoint: radiographic PFS •

Ongoing Studies of PARPi-Based Combinations

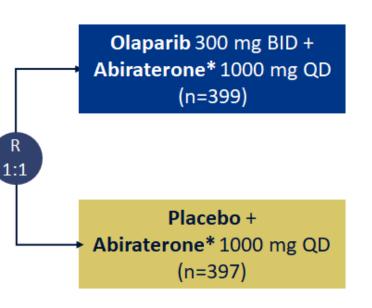
NCT03732820: Phase 3 Study of Olaparib + Abiraterone vs Abiraterone in mCRPC (PROpel)

NCT03748641: Phase 3 Study of Niraparib + Abiraterone vs Abiraterone in mCRPC (MAGNITUDE)

NCT03395197: Phase 3 Study of Talazoparib + Enzalutamide vs Enzalutamide in mCRPC (TALAPRO-2)

NCT04497844: Phase 3 Study of Abiraterone ± Niraparib in HRR mHSPC (AMPLITUDE)

NCT04455750: Phase 3 Study of Enzalutamide ± Rucaparib in mCRPC (CASPAR)


PROpel: Phase III Trial of Abiraterone +/- Olaparib

Patient population

- mCRPC
- Docetaxel for mCSPC allowed
- No prior abiraterone
- Other NHT allowed if stopped
 ≥12 months prior to enrollment
- Ongoing ADT
- ECOG PS 0–1

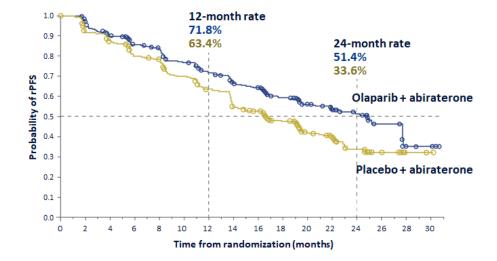
Stratification factors

- Site of distant metastases (bone only vs visceral vs other)
- Prior taxane for mCSPC

Primary endpoint

rPFS or death by investigator assessment

Key secondary endpoint

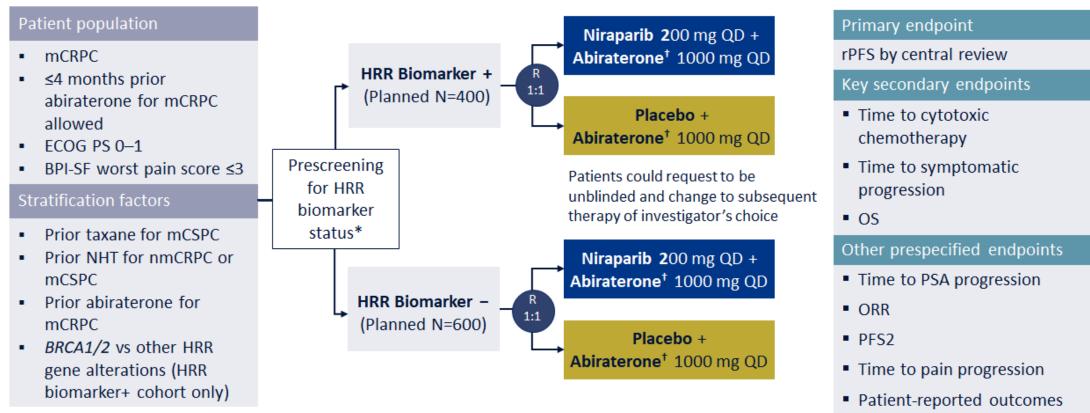

OS

Additional endpoints

- TFST
- PFS2
- ORR
- HRR mutation prevalence (tested retrospectively)
- HRQOL
- Safety and tolerability

*Plus prednisone or prednisolone 5 mg BID

PROpel: Radiographic progression-free survival

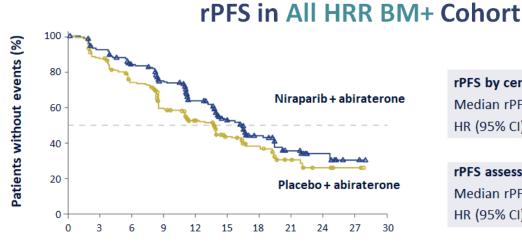

	Olaparib + abiraterone (n=399)	Placebo + abiraterone (n=397)		
rPFS by investigator assessment				
Events, n (%)	168 (42.1)	226 (56.9)		
Median rPFS, months	24.8	16.6		
HR (95% CI)	0.66 (0.54–0.	81); <i>P</i> <0.0001		

rPFS by blinded independe	ent central review
HR (95% CI)	0.61 (0.49–0.74); <i>P</i> <0.0001

	Number of patients, n		an rPFS, onths		HR (95% CI)
All patients	796	24.8	16.6	——·	0.66 (0.54-0.81)
Age at randomization					
<65	227	NR	16.4	⊢I	0.51 (0.35-0.75)
≥65	569	22.0	16.7	—	0.78 (0.62-0.98)
ECOG performance status at baseline					
0	558	24.9	16.8	⊢ €(0.67 (0.52-0.85)
1	236	17.5	14.6	F	0.75 (0.53-1.06)
Site of distant metastases					
Bone only	434	27.6	22.2	F	0.73 (0.54–0.98)
Visceral	105	13.7	10.9	⊢	0.62 (0.39-0.99)
Other	257	20.5	13.7	⊢ •I	0.62 (0.44-0.85)
Docetaxel treatment at mHSPC stage					
Yes	189	27.6	13.8	⊢	0.61 (0.40-0.92)
No	607	24.8	16.8	⊢ ●1	0.71 (0.56-0.89)
Baseline PSA					. ,
Below median baseline PSA	396	25.2	22.0	— •—•	0.75 (0.55–1.02)
Above or equal to median baseline PSA	397	18.5	13.8	⊢ ••	0.63 (0.48-0.82)
HRRm status					
HRRm	226	NR	13.9	⊢	0.50 (0.34–0.73)
Non-HRRm	552	24.1	19.0		0.76 (0.60–0.97)
			0.1	↓ 1	10

Olaparib + abiraterone better Placebo + abiraterone better

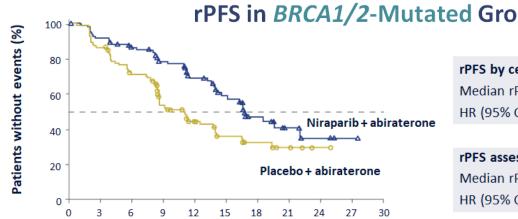
Magnitude: Phase III Trial of Abi +/- Niraparib


*HRR gene panel: **ATM, BRCA1, BRCA2, BRIP1, CDK12, CHEK2, FANCA, HDAC2, PALB2** *Plus prednisone 10 mg daily

<u>Magnitude</u>: Radiographic progression-free survival

rF

N


н

Months from randomization

onort	Niraparib + abiraterone (n=212)	Placebo + abiraterone (n=211)	
PFS by central review			
Aedian rPFS, months	16.5	13.7	
IR (95% CI)	0.73 (0.56–0.96); <i>P=</i> 0.0217		

rPFS assessed by investigator				
Median rPFS, months	19.0	13.9		
HR (95% CI)	0.64 (0.49–0.86); <i>P=</i> 0.0022			

d Group	Niraparib + abiraterone (n=113)	Placebo + abiraterone (n=112)	
rPFS by central review			
Median rPFS, months	16.6	10.9	
HR (95% CI)	0.53 (0.36–0.79); <i>P=</i> 0.0014		

rPFS assessed by investigator				
Median rPFS, months	19.3	12.4		
HR (95% CI)	0.50 (0.33–0.75); <i>P=</i> 0.0006			

Months from randomization

<u>CASPAR</u>: Phase III of Enza +/– Rucaparib

R

1:1

Patient population

- mCRPC with progression per PCWG3 guidelines
- No prior treatment for CRPC
- Prior abiraterone, darolutamide, or apalutamide for nmCRPC/mHSPC allowed
- ECOG PS 0–2
- No significant uncontrolled comorbidity or medication with drug-drug interactions with either study drug

Stratification factors

 HRR status by central testing of archival tumor tissue prior to treatment Rucaparib 600 mg BID + Enzalutamide 160 mg QD (n=492)

All patients will receive ADT (surgical or medical in 28-day cycles)

Placebo + ► Enzalutamide 160 mg QD (n=492)

Estimated primary completion: May 2023

Co-primary endpoints

rPFS

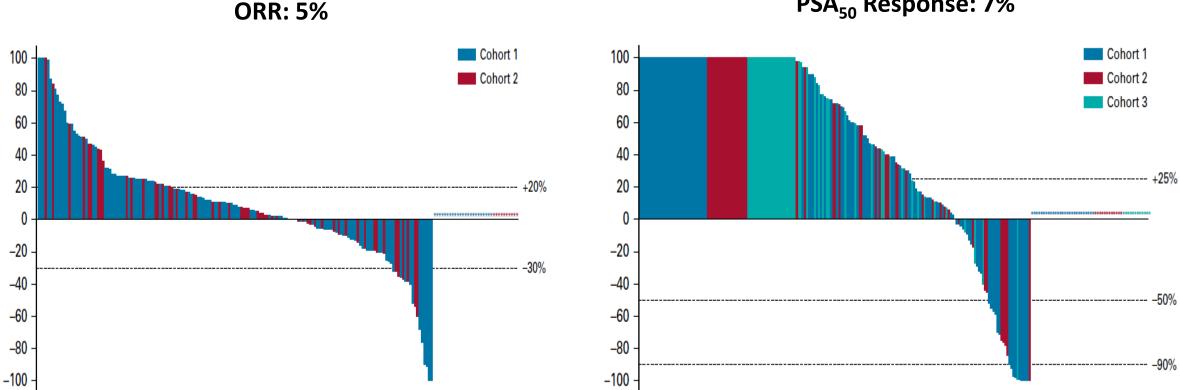
OS

Key secondary endpoints

- rPFS and OS in patients with or without pathogenic mutations in BRCA1, BRCA2, or PALB2
- Adverse events
- ORR and DOR
- PSA response rate
- QOL (FACT-P; BPI-SF; EQ-5D-5L)

Key correlative endpoint

 Concordance between tissue and plasma ctDNA-based HRR testing

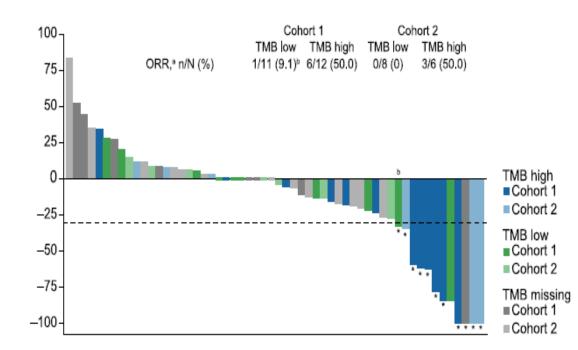


PARP Inhibitors: Conclusions

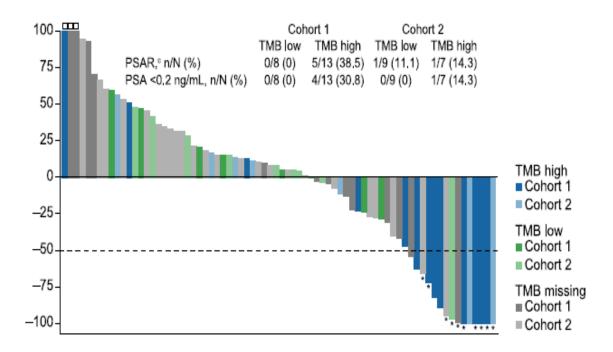
- Olaparib and Rucaparib are both FDA-approved for mCRPC
- Niraparib and Talazoparib are in development
- No PARPi-based combinations are yet FDA-approved in PCa
- PARP inhibitors:
 - □ Work best for *BRCA2*, *BRCA1* and *PALB2*
 - □ More limited activity in *ATM*, *CDK12*, *CHEK2*
 - □ Need more data for *FANCA/L*, *BRIP1*, *BARD1*, *NBN*, *RAD51/54*

PD-1 inhibitors for MMR-deficient mCRPC

Immunotherapy for mCRPC: Anti-PD1 (KeyNote-199)



PSA₅₀ Response: 7%


Antonarakis ES, et al. J Clin Oncol 2020; 38: 395-405.

Immunotherapy: Anti-PD1 + CTLA4 (CheckMate 650)

ORR: 18%

PSA₅₀ Response: 14%

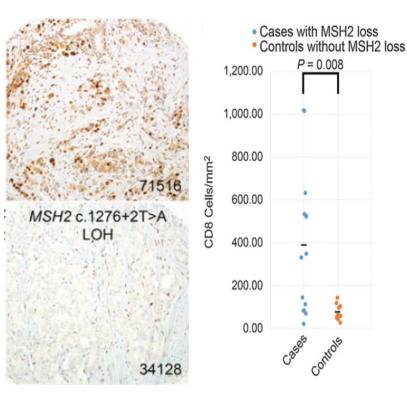


Pembrolizumab for MSI-high (dMMR) cancers

FDA Approves Merck's KEYTRUDA® (pembrolizumab) for Adult and Pediatric Patients with Unresectable or Metastatic, Microsatellite Instability-High (MSI-H) or Mismatch Repair Deficient Cancer

- Pembrolizumab for Microsatellite Instability-High (MSI-H) Cancer
- "Treatment of adult and pediatric patients with unresectable or metastatic microsatellite instability-high (MSI-H) or mismatch repair (MMR)-deficient:
 - Solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options, or
 - Colorectal cancer that has progressed following treatment with a fluoropyrimidine, oxaliplatin, and irinotecan"
- Dosage and administration (MSI-H cancers): 200 mg IV every 3 weeks

MMR-deficiency across 12 thousand cancers

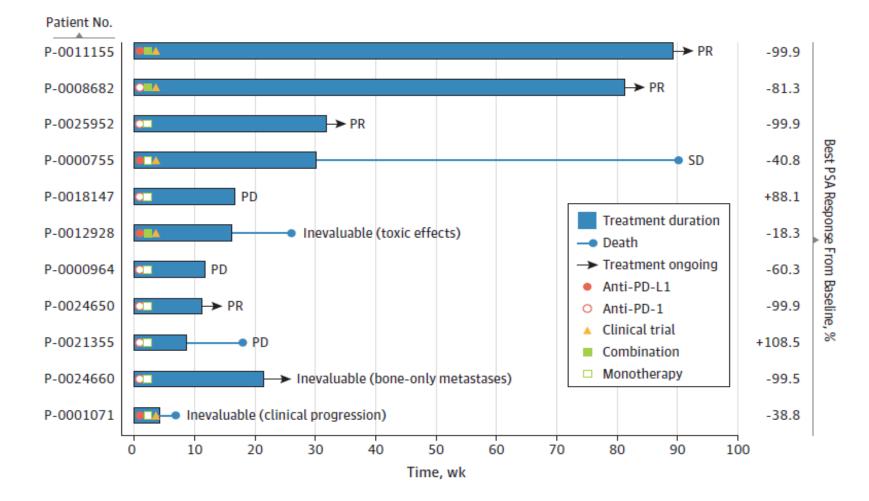


dMMR correlates with high Gleason grade

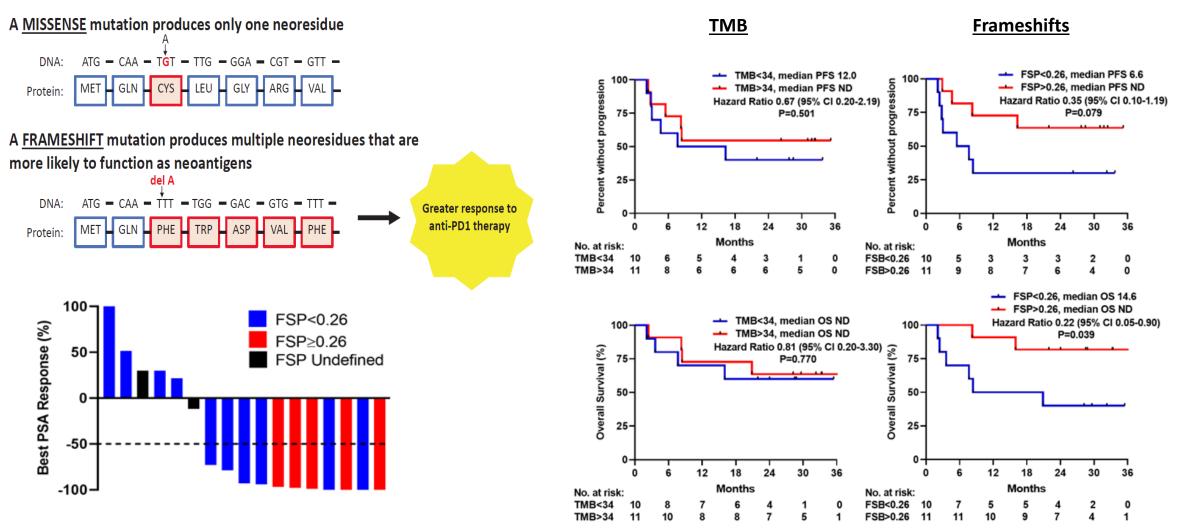
Personalized Medicine and Imaging

MSH2 Loss in Primary Prostate Cancer

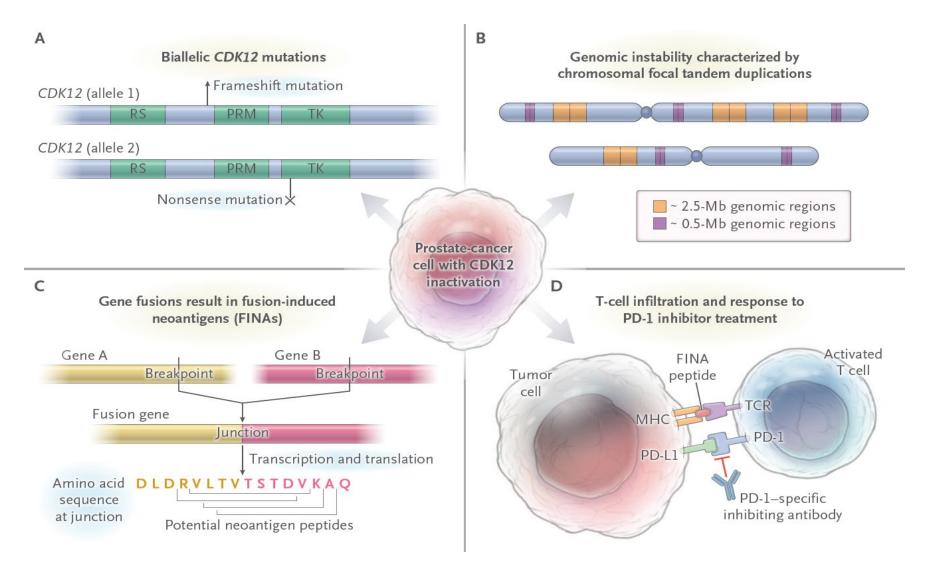
Liana B. Guedes¹, Emmanuel S. Antonarakis², Michael T. Schweizer³, Nooshin Mirkheshti¹, Fawaz Almutairi¹, Jong Chul Park², Stephanie Glavaris¹, Jessica Hicks¹, Mario A. Eisenberger², Angelo M. De Marzo^{1,2,4}, Jonathan I. Epstein^{1,2,4}, William B. Isaacs⁴, James R. Eshleman^{1,2}, Colin C. Pritchard⁵, and Tamara L. Lotan^{1,2}


- **1.2%** (14/1176) of primary PCa had MSH2 protein loss
- Pathology and MSH2 loss:
 - Primary Gleason pattern 5 enriched for MSH2 loss:
 <u>8% (7/91) vs. <1% (5/1042),</u> <u>P<0.0001</u>

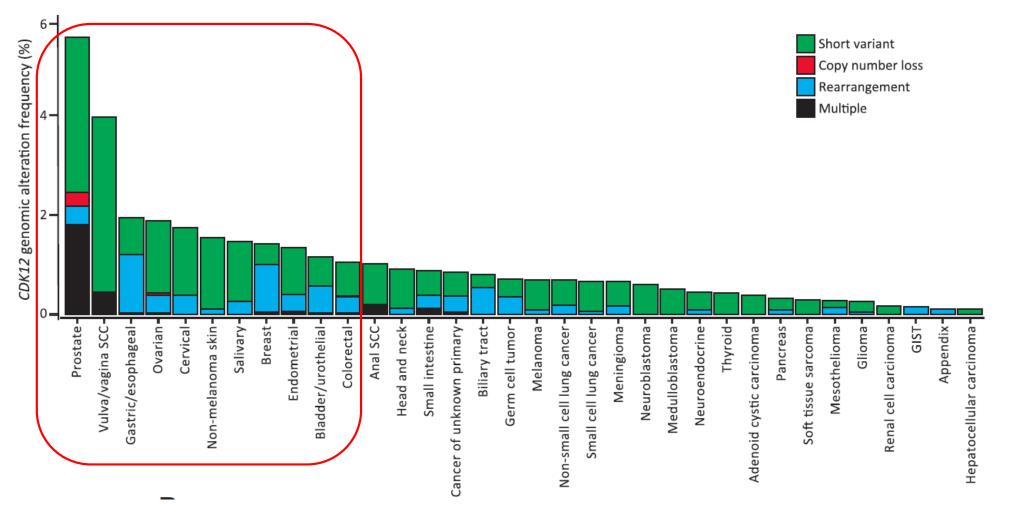
Guedes LB, Antonarakis ES, et al. *Clin Cancer Res* 2017; 23: 6863.



MSI-hi (dMMR) prostate cancers and anti-PD1

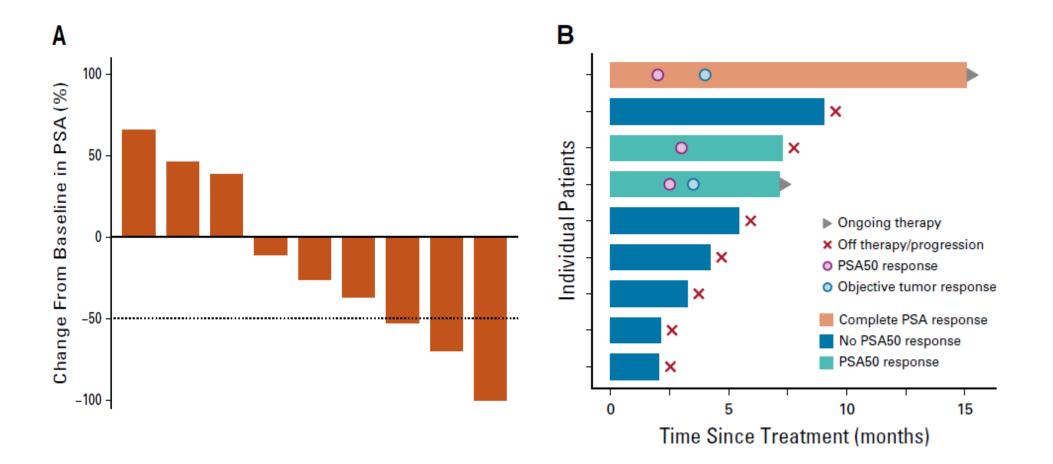


Frameshift mutations and dMMR mCRPC

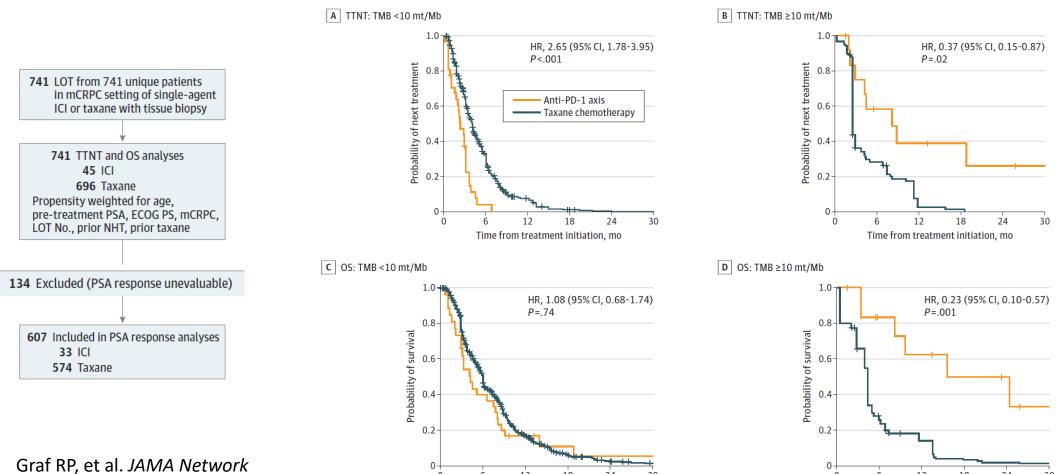


Sena LA, et al. *TheOncologist* 2021; 26: 270-278.

CDK12 mutations and mCRPC



CDK12 mutations across cancer types


Sokol ES, et al. TheOncologist 2019; 24: 1526-33.

CDK12 and anti-PD1 sensitivity in mCRPC

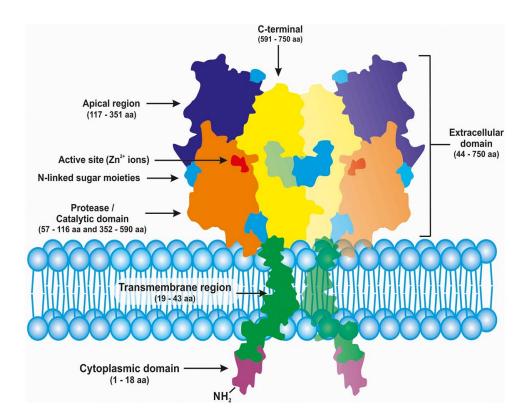
Antonarakis ES, et al. JCO Precision Oncology 2020; doi: 10.1200/PO.19.00399.

TMB ≥10 mut/Mb – Flatiron/FM database

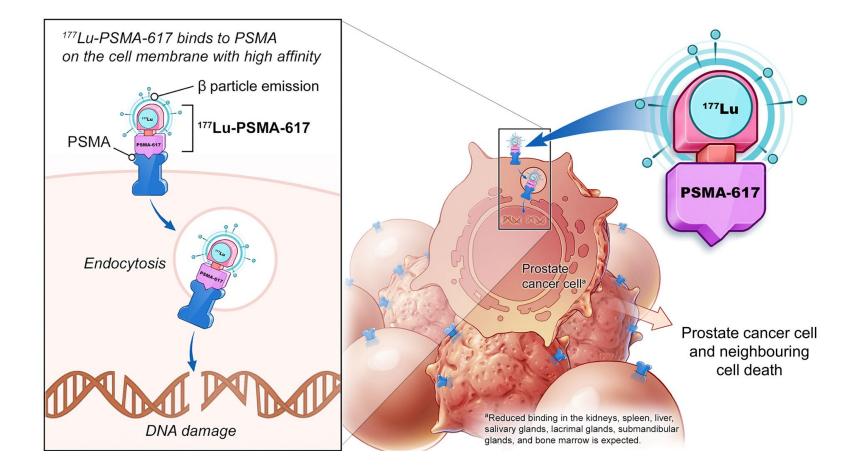
Time from treatment initiation, mo

Time from treatment initiation, mo

Open 2022; 5: e225394.


Genomic markers of ICI response in mCRPC

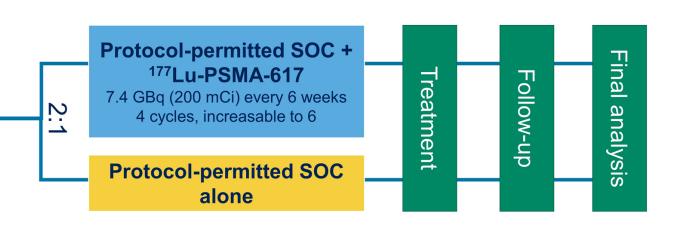
- dMMR / MSI-high
- TMB-high (≥10 mut/Mb)
- CDK12 mutations
- Frameshift (fs*) mutations?
- Certain TP53 mutations?
- POLE, POLD1 mutations (ultra-mutated)?
- Deletion of *PD-L1* 3'-UTR?
- PD-L1 protein expression? <u>NO</u>


PSMA–Targeted Therapies

PSMA: Target for imaging and therapy

- Transmembrane carboxypeptidase
- Highly expressed in prostate cancer including metastatic lesions
- Relatively restricted normal expression
 - E.g. salivary and lacrimal glands
- Excellent target for PET imaging

¹⁷⁷Lu-PSMA-617 Radioligand therapy



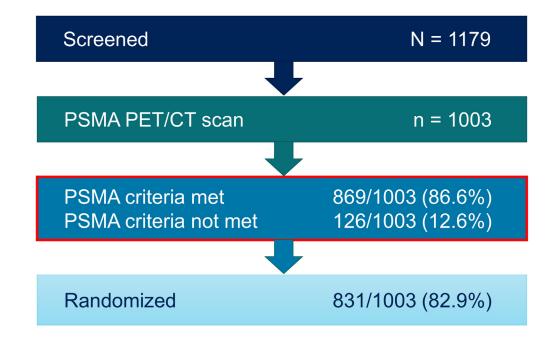
Morris MJ, et al. J Clin Oncol 39; 2021 (ASCO abstract LBA4).

VISION trial for patients with PSMA+ mCRPC

Eligible patients

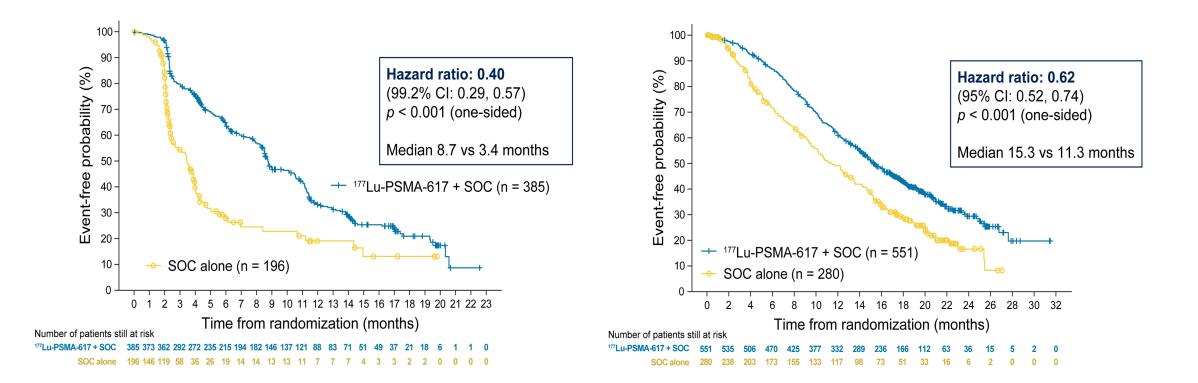
- Previous treatment with both
 - ≥ 1 androgen receptor pathway inhibitor
 - 1 or 2 taxane regimens
- Protocol-permitted standard of care (SOC) planned before randomization
 - Excluding chemotherapy immunotherapy, radium-223, investigational drugs
- ECOG performance status 0–2
- Life expectancy > 6 months
- PSMA-positive mCRPC on PET/CT with ⁶⁸Ga-PSMA-11

- Randomization stratified by
 - ECOG status (0–1 or 2)
 - LDH (high or low)
 - Liver metastases (yes or no)
 - Androgen receptor pathway inhibitors in SOC (yes or no)


- CT/MRI/bone scans
 - Every 8 weeks (treatment)
 - Every 12 weeks (follow-up)
 - Blinded independent central review

VISION trial for patients with PSMA+ mCRPC

10


⁶⁸Ga-PSMA-11 PET/CT: ~87% of patients scanned met the VISION imaging criteria for PSMA-positive mCRPC

Patient disposition in screening

Morris MJ, et al. J Clin Oncol 39; 2021 (ASCO abstract LBA4). Sartor O, et al. NEJM 2021.

VISION trial: rPFS and OS

Morris MJ, et al. J Clin Oncol 39; 2021 (ASCO abstract LBA4). Sartor O, et al. NEJM 2021.

VISION trial: rPFS forest plot

Subgroup	¹⁷⁷ Lu-PSMA-617 + SOC (n = 385)	SOC alone (n = 196)	Favors ¹⁷⁷ Lu-PSMA-617	Hazard ratio (95% Cl)
Androgen receptor path Yes No	way inhibitors as part of 170 215	planned SOC 107 89	-	0.53 (0.37, 0.76) 0.27 (0.19, 0.39)
LDH ≤ 260 IU/L > 260 IU/L	244 140	120 75	<u>⊢</u> ∎	0.44 (0.32, 0.61) 0.37 (0.25, 0.53)
Liver metastases Yes No	37 348	22 174	⊢I ⊢_■I	0.28 (0.15, 0.53) 0.43 (0.33, 0.57)
ECOG score 0 or 1 2	352 33	179 17	⊢ -	0.43 (0.33, 0.56) 0.18 (0.08, 0.38)
Age < 65 years ≥ 65 years	96 289	39 157	⊢ ∎	0.42 (0.23, 0.76) 0.40 (0.30, 0.53)
Race White African American or Bla Asian	336 ck 29 6	166 14 9	⊢ -	0.38 (0.29, 0.50) 0.72 (0.23, 2.20) 1.50 (0.36, 6.19)
All patients	385	196	0.125 0.25 0.5 1	0.40 (0.31, 0.52) 2 4 8

Morris MJ, et al. J Clin Oncol 39; 2021 (ASCO abstract LBA4). Sartor O, et al. NEJM 2021.

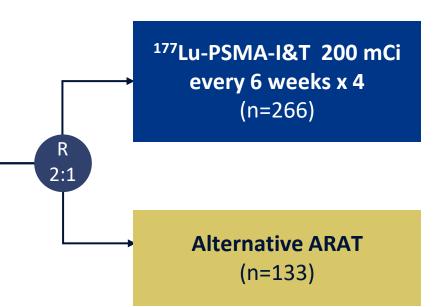
VISION trial: Adverse Events

Event	¹⁷⁷ Lu-PSMA-617 pl (N=!	Standard Care Alone (N=205)			
	All Grades	Grade ≥3	All Grades	Grade ≥3	
	number of patients (percent)				
Any adverse event	519 (98.1)	279 (52.7)	170 (82.9)	78 (38.0)	
Adverse event that occurred in >12% of patients					
Fatigue	228 (43.1)	31 (5.9)	47 (22.9)	3 (1.5)	
Dry mouth	205 (38.8)	0	1 (0.5)	0	
Nausea	187 (35.3)	7 (1.3)	34 (16.6)	1 (0.5)	
Anemia	168 (31.8)	68 (12.9)	27 (13.2)	10 (4.9)	
Back pain	124 (23.4)	17 (3.2)	30 (14.6)	7 (3.4)	
Arthralgia	118 (22.3)	6 (1.1)	26 (12.7)	1 (0.5)	
Decreased appetite	112 (21.2)	10 (1.9)	30 (14.6)	1 (0.5)	
Constipation	107 (20.2)	6 (1.1)	23 (11.2)	1 (0.5)	
Diarrhea	100 (18.9)	4 (0.8)	6 (2.9)	1 (0.5)	
Vomiting	100 (18.9)	5 (0.9)	13 (6.3)	1 (0.5)	
Thrombocytopenia	91 (17.2)	42 (7.9)	9 (4.4)	2 (1.0)	
Lymphopenia	75 (14.2)	41 (7.8)	8 (3.9)	1 (0.5)	
Leukopenia	66 (12.5)	13 (2.5)	4 (2.0)	1 (0.5)	

Sartor O, et al. NEJM 2021.

¹⁷⁷Lutetium–PSMA–617: FDA Approved!

FDA Approves ¹⁷⁷Lu-PSMA-617 for the Treatment of mCRPC Press Release — March 23, 2022


"On March 23, 2022, the Food and Drug Administration approved [the radio-ligand therapy, ¹⁷⁷Lu-PSMA-617] for the treatment of adult patients with prostate-specific membrane antigen (PSMA)positive metastatic castration-resistant prostate cancer (mCRPC) who have been treated with androgen receptor (AR) pathway inhibition and taxane-based chemotherapy.

On the same day, the FDA approved gallium Ga 68 gozetotide, a radioactive diagnostic agent for positron emission tomography (PET) of PSMA-positive lesions, including selection of patients with metastatic prostate cancer for whom lutetium Lu 177 vipivotide tetraxetan PSMA-directed therapy is indicated. Gallium Ga 68 gozetotide is the first radioactive diagnostic agent approved for patient selection in the use of a radioligand therapeutic agent. "

¹⁷⁷Lu–PSMA–I&T: The <u>ECLIPSE</u> trial

Patient population

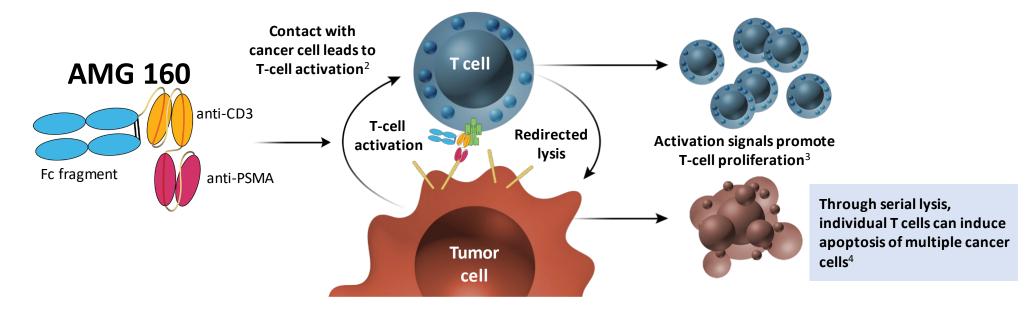
- mCRPC with progression per PCWG3 guidelines
- Only <u>one</u> prior ARAT (abiraterone, enzalutamide, darolutamide, apalutamide)
- <u>No prior chemo treatment</u>
- No prior radioligands
- ECOG PS 0–2
- Positive PSMA-PET scan

Estimated primary completion: Jan 2024

Primary endpoint

rPFS

Key secondary endpoints


- OS
- Overall PFS
- PFS-2 (second PFS)
- PSA response rate
- Time to first SSE
- QOL (EORTC QLQ-C30)

Key correlative endpoint

- Dosimetry
- PKs (pharmacokinetics)

PSMA–Targeted BiTEs (AMG160)

Amgen BiTE® (Bispecific T-cell Engager)

- BiTE molecules engage a patient's own T cells to attack and eradicate cancer cells¹
 - T-cell activation induces transient cytokine release and tumor killing¹
- Blinatumomab (BLINCYTO[®], Amgen Inc.) is the first and only bispecific immunotherapy approved in oncology worldwide¹
- AMG 160 is a half-life extended PSMA x CD3 BiTE immunotherapy for mCRPC

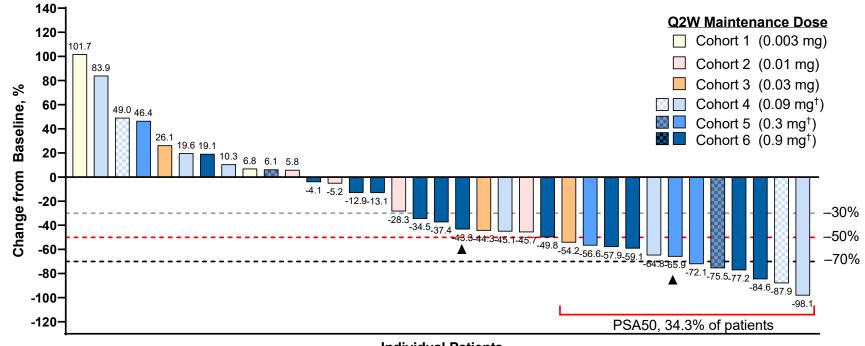
Tran, Ben et al. ESMO 2021, Sept 19-21.

Amgen BiTE[®] (Bispecific T-cell Engager)

Inclusion Criteria

- Histologically or cytologically confirmed mCRPC refractory to novel hormonal therapy **and**
 - Have failed 1–2 taxane regimens; or
 - Patient deemed unsuitable for or has refused taxanes
- Evidence of progressive disease per PCWG3

Exclusion Criteria


- Active autoimmune disease or requiring immunosuppressive therapy
- Prior PSMA-targeted therapy (patients treated with PSMA radionuclide therapy may be eligible)
- CNS metastases, leptomeningeal disease, or spinal cord compression

Baseline Demographics	All (N = 43)
Median (range) age, y	66.0 (49–78)
Race, n (%)	
Asian	2 (4.7)
Black	2 (4.7)
White	34 (79.1)
Other	5 (11.6)
Prior lines of therapy, n (%)	
1	2 (4.7)
2	4 (9.3)
3	9 (20.9)
≥4	26 (60.5)
Median (range)	4 (1–9)
Median (range) PSA at baseline, μg/L	79.2 (0.1–4035.0)
RECIST-measurable disease, n (%)	15 (34.9%)

Tran, Ben et al. ESMO 2021, Sept 19-21.

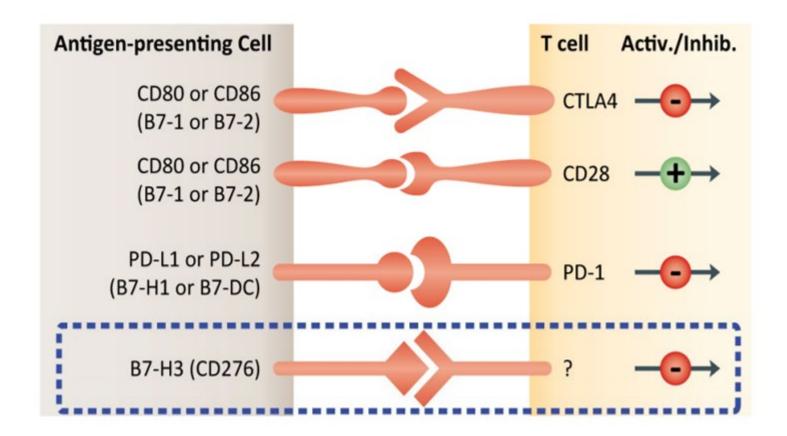
Amgen BiTE® (Bispecific T-cell Engager)

• PSA reductions > 50% occurred in 12/35 (34.3%) evaluable patients

Individual Patients

Amgen BiTE® (Bispecific T-cell Engager)

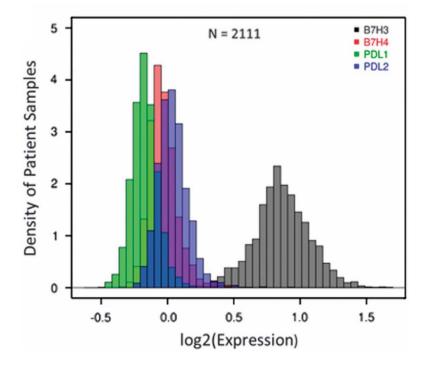
Cytokine Release Syndrome

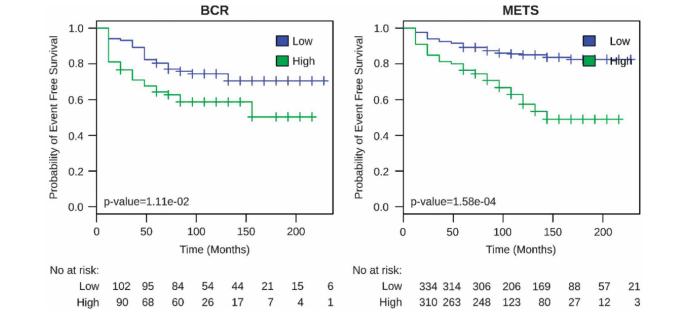

- CRS was reversible, manageable, most severe in cycle 1 and associated with fever, hypotension, transient transaminitis, nausea/vomiting and/or diarrhea (Lee 2014 grading)
 - No grade 4/5 CRS events or treatment discontinuations
 - 26 (60.5%) patients had grade 2 CRS as worst grade (hypotension: 15 [34.9%]; transaminitis: 13 [30.2%])*
 - 11 (25.6%) patients had grade 3 CRS as worst grade (hypotension: 6 [14.0%]; transaminitis: 10 [23.3%])*
 - Transaminitis events were short-term AST/ALT elevations not associated with long-term hepatic dysfunction
 - 4 (9.3%) patients experienced reversible atrial fibrillation in setting of CRS/tachycardia

CRS Grading (Lee 2014)							
Grade 1	Grade 2	Grade 3	Grade 4 ⁺				
Fever, nausea, fatigue, etc, requiring symptomatic treatment only	 Grade 1 CRS symptoms and O₂ requirement < 40% Intravenous fluids or low-dose vasopressor for hypotension Grade 3 transaminitis 	 Grade 1 CRS symptoms and O₂ requirement ≥ 40% High-dose or multiple vasopressors for hypotension Grade 4 transaminitis 	 Grade 1 CRS symptoms and Requirement for ventilator Grade 4 organ toxicity (excluding transaminitis) 				

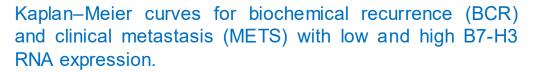
Tran, Ben et al. ESMO 2021, Sept 19-21.

B7-H3–Targeted Therapies

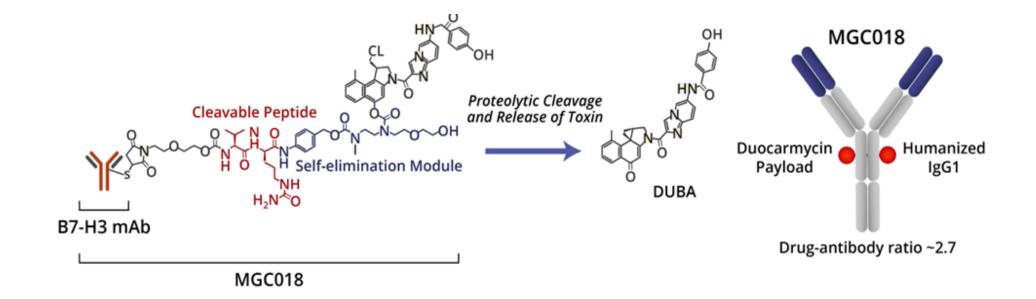

B7-H3: Member of B7 family of immune checkpoints



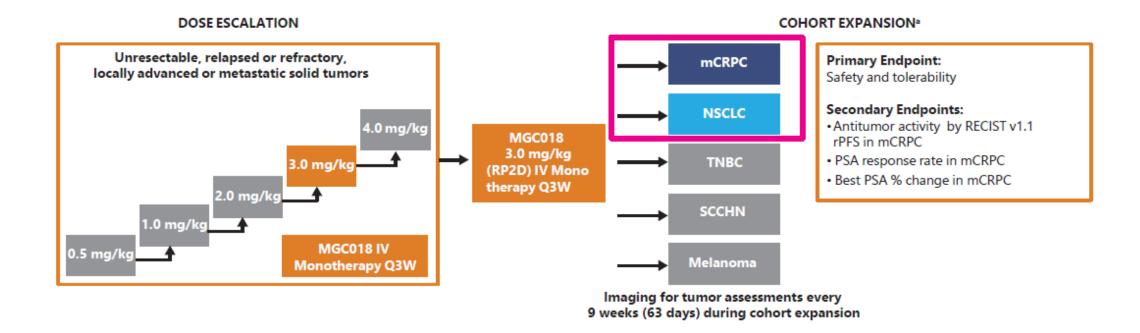
Expressed by 90% of prostate cancers (higher expression in mCRPC than in localized PCa).


Pardoll D, et al. Nature 2012.

B7-H3, compared to other checkpoints, in PCa



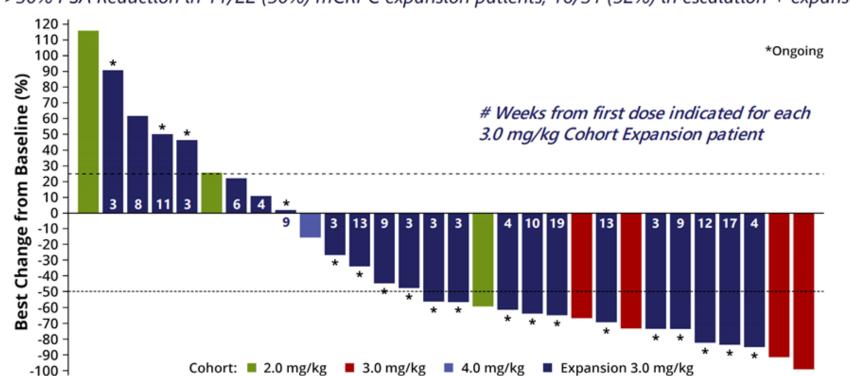
RNA expression distributions of B7-H3, B7-H4, PD-L1 and PD-L2 in a prospective radical prostatectomy (RP) cohort (n=2111).



Benzon B, et al. *Prostate Cancer Prostatic Diseases* 2017.

MGC 018 is a B7-H3–directed ADC

MGC 018 clinical trial: Phase 1b

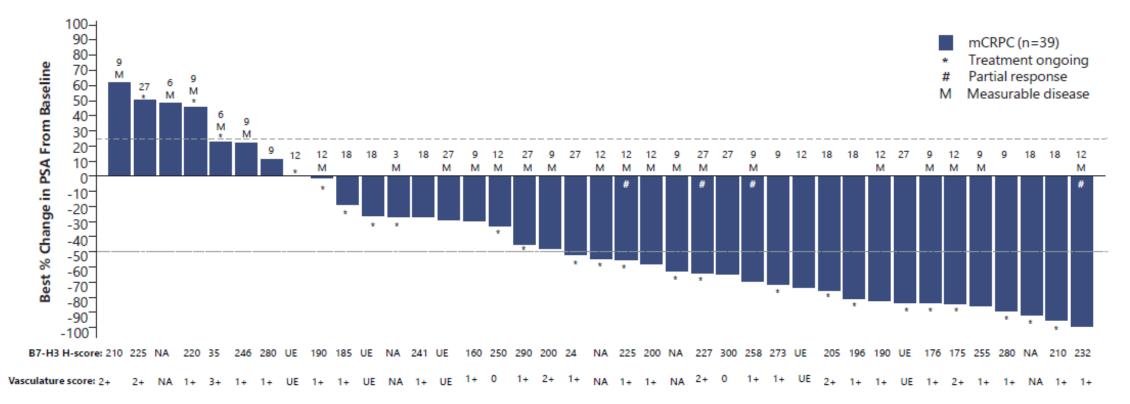


^aEnrollment for the mCRPC, NSCLC, and TNBC cohorts opened in 2020, whereas the SCCHN and melanoma cohorts opened in May 2021.

IV, intravenous; mCRPC, metastatic castration-resistant prostate cancer; NSCLC, non-small cell lung cancer; PSA, prostate-specific antigen; Q3W, every 3 weeks; RECIST, Response Evaluation Criteria in Solid Tumors; RP2D, recommended Phase 2 dose; rPFS, radiographic progression-free survival; SCCHN, squamous cell cancer of head and neck; TNBC, triple-negative breast cancer.

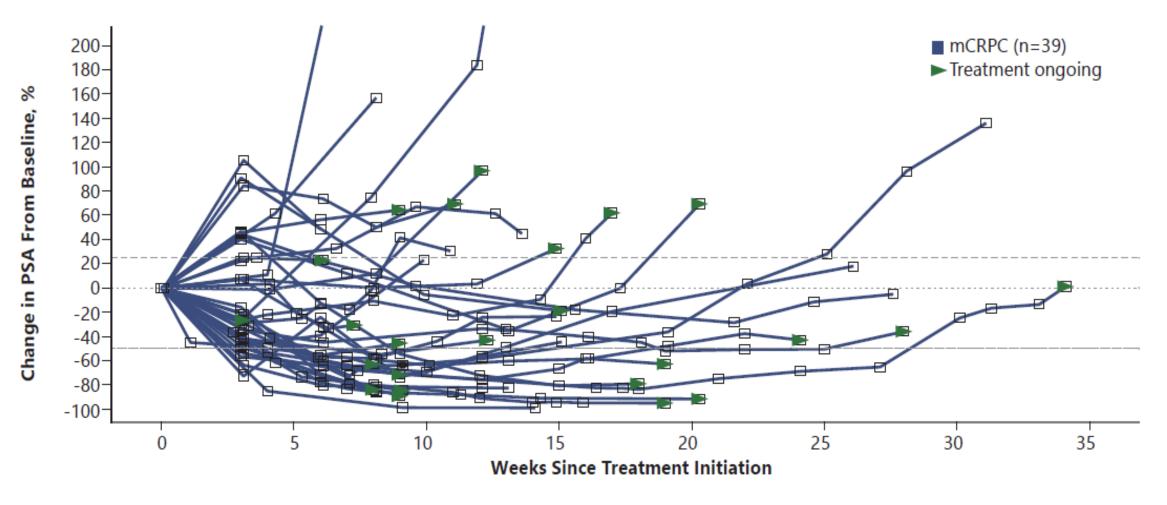
MGC 018 clinical trial: Phase 1b

Best Percent Change in PSA: Dose Escalation and Cohort Expansion


>50% PSA Reduction in 11/22 (50%) mCRPC expansion patients; 16/31 (52%) in escalation + expansion

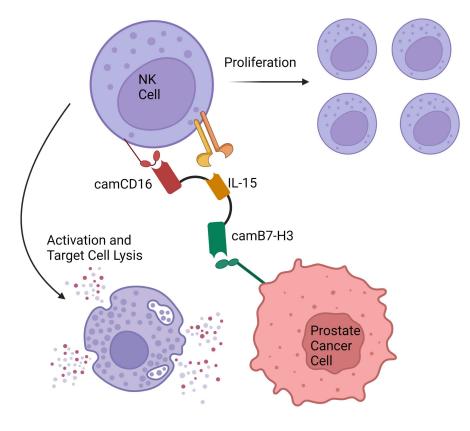
Jang S, et al. J Clin Oncol 39; 2021 (ASCO abstract 2631).

MGC 018 clinical trial: Phase 2 expansion


• In mCRPC cohort, 39 patients were evaluable for PSA response:

- Twenty-one of 39 patients (53.8%) had reductions in PSA from baseline of more than 50%
- Twenty-four of 39 patients (61.5%) remained on treatment

Shenderov E, et al. ESMO 2021 (abstract #620P).


MGC 018 clinical trial: Phase 2 expansion

Shenderov E, et al. ESMO 2021 (abstract #620P).

B7-H3-targeted TriKE

Trispecific Killer Engager (TriKE) Structure

Nick Zorko, MD PhD

- Clinical-grade batch of B7-H3 TriKE (GTB-5550) currently in production.
- Goal for FDA-IND application in Q1/2 of 2023.
- First-in-human Phase 1/2 clinical trial for B7-H3+ cancers with prostate-specific arm in Q3/4 2023.

Conclusions

- Germline and somatic DNA-repair mutations are common in mCRPC patients
- HRR mutations sensitize to PARP inhibitors, and perhaps Platinums and Radium-223
- MMR mutations, TMB >10 muts/Mb (and perhaps CDK12 mutations) sensitize to PD-1 inhibitors
- PSMA is a target for imaging (PET) and therapy (¹⁷⁷Lu-PSMA)
- Novel BiTEs, targeting PSMA, are in development
- B7-H3 may be a relevant therapeutic target in PCa

Thank You !

Masonic Cancer Center

• University of Minnesota

Comprehensive Cancer Center designated by the National Cancer Institute