

Effects of Genetic Polymorphism on Pharmacokinetics of Cyclophosphamide in Conditioning Regimen for Adult Hematopoietic Cell Transplant Patients

Takuto Takahashi^{a,b}, Rachael Pearson^c, Qing Cao^d, Pamala Jacobson^b

^aDivision of Pediatric Hematology/Oncology/Blood and Marrow Transplant, ^bDepartment of Experimental and Clinical Pharmacology, ^cCollege of Pharmacy, ^dClinical and Translational Science Institute, University of Minnesota, Minneapolis, MN

University of Minnesota

Comprehensive Cancer Center designated by the National Cancer Institute

Introduction

- Cyclophosphamide (CY) is a commonly used chemotherapy agent in the conditioning regimen for hematopoietic cell transplant (HCT).
- Variable exposure of CY may affect the HCT outcomes [1,2], but its predictors are not well-studied.
- We aimed to explore potential single nucleoside polymorphisms (SNPs) that are associated with pharmacokinetics (PK) of CY.

Methods

Design: Observational pharmacogenomic-PK study

Patients: Adults HCT recipients on non-myeloablative regimen with CY on Day -6 (n = 85)

PK study:

- Blood sampling at 4, 6, 8, 26, 47 hours after the start of CY infusion
- Measured concentration of phosphamide mustard (PM), a final cytotoxic metabolite of CY
- Systemic PM exposure, as area-under-the-curve (AUC), was calcularated for three intervals (0-8 hour, 0-26 hours, and 0-infinity) by non-compartmental analysis.

Genotyping:

- Candidate genetic variants potentially associated with CY PK, toxicity and efficacy were identified from the literature.
- Genotyping was conducted for 141 SNPs.

Statistical analysis:

- 1. Excluded SNPs without association with PM AUCs (p ≥0.05)
- 2. Combined 3 genotypes into 2 groups when %AUC difference <10%
- 3. Elimiated highly correlated SNPs in linkage disequilibrium ($R^2 > 0.9$)
- 4. Conducted stepwise multiple linear regression model selection by including the remaining SNPs, age, sex, and creatinine clearance (CrCL)
- 5. Final model included significant SNPs (p <0.05) and CrCL

Results Table 1. Study population (n = 85) Age, mean (SD) 61 (10) 28 (33%) Age <60, n (%) Age ≥60, n (%) 57 (67%) Male, n (%) 47 (55%) Female, n (%) 38 (45%) Creatinine clearance, mean (SD) 79.5 (23.0) Race/ethnicity 82 (97%) White **Native American** 1 (1%) 2 (2%) Unknown Diagnosis Acute myeloid leukemia 29 (34%) Myelodysplastic syndrome 16 (19%) Multiple Myeloma 7 (8%) Acute lymphoblastic luekemia 6 (7%) Myeloproliferative disease 6 (7%) 21 (24%) Others

Table 2. PK parameters of PM

Table 2. PK para	ameters of	edianRange6(4 – 23)5126(2269 – 14248)8494(13285 – 66221)3756(36624 – 126512)3612(40269 – 141270)				
Parameters	Median	Range				
T _{max} (hour)	6	(4 - 23)				
C _{max} (ng/mL)	5126	(2269 - 14248)				
AUC 0-8 hour*	28494	(13285 - 66221)				
AUC 0-26 hour*	73756	(36624 - 126512)				
AUC 0-infinity*	83612	(40269 - 141270)				
CL (L/hr)	49.1	(24.8 - 106.9)				
CL (L/hr/kg)	0.58	(0.26 - 1.14)				
Note: Tmax time a	at mavimum	concentration:				

Note: Imax, time at maximum concentration; Cmax, maximum concentration; CL, clearance; *unit is (ng•hr/mL)

SLC19A1 CYP17A1 rs1051266 rs3781287 rs6897932 – A/A+G/A --- G/G **-**A/A+A/C 4000 **-**C/T+C/C ••• T/T 20 30 40 20 30 20 CXCL12 CYP2B6 GSTT1 rs1801157 rs4802101 Null **-** A/A+G/A **-** C/C ··· Present ... G/G ··· C/T+T/T 2000 20 30 40

Figure 1. Time-concentration data by genotypes

Table 4. Multiple linear regression analysis

	AUC 0-8			AUC 0-26			AUC U-INT		
	Estimate	(95%CI)	р	Estimate	(95%CI)	р	Estimate	(95%CI)	р
Creatinine clearance	32	(-59 - 123)	0.48	110	(-55 - 274)	0.19	136	(-49 - 322)	0.15
rs1051266: G>A (SLC19A1)				-12449	(-20023 –	∠ 0 01	-15119	(-23651 –	<0.01
G/G (vs. G/A+A/A)				-12443	-4875)	\0.01	-13119	-6587)	\0.01
rs1801157: A>G (CXCL12)				-13566	(-21364 –	∠0 01	-17677	(-26461 –	<0.01
A/A+A/G (vs. G/G)				-13300	-5768)	\0.01	-1/0//	-8893)	\0.01
rs3781287: C>A (CYP17A1)				-12955	(-22729 –	0 010	-13487	(-24497 –	0.02
C/C (vs. C/A+A/A)				-12933	-3181)	0.010	-13407	-2476)	0.02
rs4802101: C>T (CYP2B6)	-5691	(-9871 – -1511)	U UU8	.008 -7855	(-15674 –	0.049 -59	-5970	(-14779 –	0.18
C/C (vs. C/T+T/T)			0.008		-35)		-3370	2838)	0.10
rs6897932: T>C (IL-7Rα)				-14410	(-24980 –	0 008	-20022	(-31929 –	<0.01
T/T (vs. T/C+C/C)				-14410	-3839)	0.008	-20022	-8115)	\0.01
GSTT1:				-6255	(-15315 –	0 17	-11130	(-21336 –	0.03

References: [1] McDonald, et al. Blood. 2003 Mar 1;101(5):2043-8. [2] McCune, et al. Clin Pharmacol Ther. 2009 Jun;85(6):615-22. [3] Shu, et al. Br J Clin Pharmacol. 2016 Feb;81(2):327-40.

Null (vs. Present)

Discussion

CYP2B6

ALIC O inf

0.03

-924)

- Lower PM AUC ₀₋₈ and AUC₀₋₂₆ were associated with a 2KB upstream variant (rs4802101) of CYP2B6, which is a major enzyme of CY to form PM.
- This variant was reported to have 2-fold lower exposure of a CY active metabolite in patients with systemic lupus erythematousus [3].

SLC19A1, IL7Rα, CXCL12

- Two functional variants were associated with low PM AUC_{0-26} and/or AUC_{0-inf} ; rs1051266 in SLC19A1 (p.His27Arg) and rs6897932 in IL7R α (p.Thr244Ile).
- An intron variant of CXCL12 (rs1801157) also showed low PM AUC₀₋₂₆ and/or AUC_{0-inf}.
- These genes were not known to be involved in CY metabolism.

Conclusion

- We confirmed a previously reported effect of a *CYP2B6* variant on CY PK in a different population.
- We identified novel SNPs that are associated with PM exposure. These variants need to be validated in other populations and their functionality needs to be assessed.