Mechanisms of immunoevasion in acute lymphoblastic leukemia

Sean I. Tracy MD/PhD
T32 Fellow

Division of Hematology, Oncology, and Bone Marrow Transplantation

University of Minnesota April 15, 2021

Disclosure of Conflicts of Interest

None

Learning Objectives

Within the setting of acute lymphoblastic leukemia, this presentation will:

Survey the evidence linking T-cell exhaustion with subsequent relapse

•Describe mechanisms by which immune checkpoint blockade can prolong survival in murine models

Highlight promising clinical trial strategies to counter T-cell exhaustion

T-cell exhaustion in acute lymphoblastic leukemia

- T-cell exhaustion is associated with treatment failure following chimeric antigen receptor T-cells (CART), bi specific T-cell engagers (BiTEs), and allogeneic hematopoietic cell transplantation
- Leukemic relapse risk is also increased in the setting of endogenous CD4+ T-cell exhaustion
- Understanding of the mechanisms governing the induction of T-cell exhaustion and its contribution to relapse remains inadequate

Research Questions:

- 1. What are the mechanisms linking CD4+ T-cell exhaustion and relapse in ALL?
- 2. Why do some patients present with T-cell exhaustion while most do not?
- 3. How can we recruit the endogenous immune system to eradicate residual disease?

Murine models of ALL recapitulate T-cell exhaustion

PD-L1 ICB leads to eradication of residual leukemia

scRNA-seq reveals that PD-L1 ICB rescues an NKG7+ cytotoxic subset from exhaustion

Conclusions and Future Directions

- •CD4+ T-cell exhaustion is associated with inferior outcomes in B-cell ALL
- Murine models recapitulate key features of ALL-induced T-cell exhaustion
- •PD-L1 immune checkpoint blockade counters CD4+ T-cell exhaustion and is able to eradicate minimal residual disease
- •B-cell ALL induces exhaustion of an NKG7+ cytotoxic CD4+ T-cell subset
- •Ongoing research is being conducted on patient-derived bone marrow specimens to identify immunological correlates of responsiveness to immune checkpoint blockade
- •Immune checkpoint blockade is being explored following allogeneic HCT (NCT03286114), and in combination with blinatumomab (NCT04546399), (NCT02879695).

