Identifying and Managing Cancer Treatment Cardiotoxicities in Patients Undergoing Therapy

Michel G. Khouri, MD Associate Professor of Medicine Division of Cardiology Duke University Health System

Objectives

- Discuss the use of clinical tools, imaging, and other tests to evaluate patients at risk for cardiotoxicity before, during, and after cancer treatment
- Employ multidisciplinary strategies to mitigate the risk for cardiotoxicity in cancer patients

I have the following financial relationships to disclose:

- Consulting/advisory board: Eidos Therapeutics (BridgeBio) and Alnylam Pharmaceuticals
- Research support (Institutional): Pfizer, Alnylam Pharmaceuticals, Eidos Therapeutics (BridgeBio), Ionis Therapeutics, Moleculin Biotech
- Speaker's bureau: Alnylam Pharmaceuticals
- Stock Shareholder: Springworks Therapeutics, Chimerix, Inc. (spouse)

None are relevant to the content of this presentation

Cardiovascular Risk for the Cancer Journey

The Basis for Considering CV Risk in Cancer

CVD=cardiovascular disease.

The Context: Balancing Cancer and CV Outcomes

....

The Spectrum of CV Risk Considerations

Prior to Cancer Therapy

 Pre-existing cardiovascular disease During Cancer Therapy

 Treatment cardiotoxicity and multiple hit After Cancer Therapy

- Early-onset CVD
- Survivorship

Prior to Cancer Therapy

• Define the cardiovascular substrate

Defining the CV Substrate: Assessments of CV Reserve

0

ACC=American College of Cardiology; AHA=American Heart Association; ATE=arterial thromboembolism; CAD=coronary artery disease; LVEF=left ventricular ejection fraction; PAD=peripheral artery disease; VTE=venous thromboembolism; PH=pulmonary hypertension. Adapted from Khouri MG et al. *Circulation*. 2012;126:2749-2763.

Pre-Cancer Therapy: Importance of Baseline CV Disease

Presence of CVD is associated with worse outcomes in cancer survivors.

CVRF=cardiovascular risk factors. Armenian SH et al. *Blood*. 2012;120:4505-4512.

Existing CVD Can Worsen Cancer-specific Outcomes

Myocardial infarction accelerates breast cancer via innate immune reprogramming

medicine

	Total	No.events	CV event- multivariable-adjusted HR (95% Cl)	P _{trend}
Recurrence	1724	270	1.59 (1.23–2.05)	0.0004
Breast cancer- specific mortality	1544	168	1.60 (1.15–2.22)	0.0045

LETTERS

https://doi.org/10.1038/s41591-020-0964-7

Prior to Cancer Therapy

 Pre-existing cardiovascular disease During Cancer Therapy

 Treatment cardiotoxicity and multiple hit

During Cancer Therapy: Spectrum of Treatment-related Cardiotoxicity

During Cancer Therapy: ICI CVAEs

Conduction disease • Atrioventricular block

Myocarditis • Heart failure • Ventricular arrhythmias

With ave v3 v6

mon mon mon mon mon

Coronary artery disease • Atheriosclerotic plaque rupture • Acute myocardial infarction • Coronary vasculitis

Non-inflammatory left ventricular dysfunction • Heart failure • Takotsubo syndrome

Spectrum of Myocarditis Presentations

During Cancer Therapy: Multiple Hits to the CV System

'Cardiotoxicity': A Spectrum of Risks, Outcomes, and Causes

0

Definitions and Significance of CTRCD

CTRCD		
Symptomatic CTRCD (HF) ^{a,b}	Very severe	HF requiring inotropic support, mechanical circulatory support, or consideration of transplantation
	Severe	HF hospitalization
	Moderate	Need for outpatient intensification of diuretic and HF therapy
	Mild	Mild HF symptoms, no intensification of therapy required
Asymptomatic CTRCD	Severe	New LVEF reduction to <40%
	Moderate	New LVEF reduction by ≥10 percentage points to an LVEF of 40–49% OR New LVEF reduction by <10 percentage points to an LVEF of 40– 49% AND either new relative decline in GLS by >15% from baseline
	Mild	OR new rise in cardiac biomarkers ^c LVEF \geq 50% AND new relative decline in GLS by >15% from baseline AND/OR new rise in cardiac biomarkers ^c

Lyon AR et al. Eur Heart J. 2022; 43:4229-4361.

0

What can we do about cardiotoxicity? EARLY DETECTION

Modalities for Early Detection of CTRCD

- Desirable features
 - Detects injury signal before LV impairment
 - Detects LV signal before symptoms
 - Highly predictive of clinically significant disease
 - Reproducible
 - Widely available
 - Noninvasive
 - Inexpensive
 - Actionable in guiding therapy

LV Ejection Fraction

2D Echo

3D Echo

LVEF Sensitivity for Cardiotoxicity

Accuracy and Reproducibility: MRI vs Echo (2D, 3D) LVEF

CMR=cardiovascular magnetic resonance; SEM=spatial error model; TTE=transthoracic echocardiogram.

Thavendiranathan P et al. J Am Coll Cardiol. 2013;61:77-84.

LVEF Sensitivity for Cardiotoxicity

Discordance with Myocellular Injury

	Nuclear (n =	Scans 173)	Echocardiogram (n = 146)	
Biopsy Grade	No. Patients	Mean EF	No. Patients	Mean EF
0	16	63%	16	65%
0.5	50	66%	43	66%
1.0	55	62%	46	67%
1.5	21	58%	19	61%
2.0	20	61%	15	62%
3.0	11	61%	7	65%
+ 3 0				
+20-	n=Ю	n <u>=</u> 4	n=6 T	
+10-	f	Ι	r=4	
+5	n#2		-++	미크
-10-		T I		
-20-		† Ŧ	I	
		1		

Change in Biopsy Grade

+142

+2

1

-30-

-1

LVEF Sensitivity for Cardiotoxicity

Α

Susceptibility to Loading Conditions

What can we do about cardiotoxicity?

Advances in Imaging-based Screening

Speckle-tracking Strain Echocardiography

 L_1

8

cm

-20%

<u>Strain</u>

Advances in Imaging-based Screening

Traditional and Novel Parameters

CTRCD

Negishi K et al. J Am Soc Echocardiogr. 2013;26:493-498.

Ali MT et al. J Am Soc Echocardiogr. 2016;29:522-527.

Early Detection

Longitudinal Strain vs 3D Echo LVEF

TCPH=docetaxel, carboplatin, trastuzumab, and pertuzumab. REFERENCE??

Early Detection

Longitudinal Strain vs LVEF Surveillance: SUCCOUR Trial

CPT=cardioprotective therapy. Thavendiranathan P et al. *J Am Coll Cardiol*. 2021;77:392-401.

What can we do about cardiotoxicity?

- LVEF - STRAIN? - MULTI-MODALITY IMAGING

Radiation-induced CV Disease: Multimodality Imaging Approach

- Late manifestation occurring yearsdecades after treatment
- Results from diffuse interstitial fibrosis and collagen deposition
- Luminal narrowing of arteries and arterioles; accumulation of myofibroblasts and intimal proliferation
- Myocardial fibrosis, VHD (regurgitation or stenosis); CAD; pericardial disease and conduction system disease
- Often overlap of pathologies within individuals
- Non-specific symptoms: fatigue, dyspnea VHD=valvular heart disease.

Desai MY et al. JACC Cardiovasc Imaging. 2018;11:1132-1149.

Cardiac Magnetic Resonance: Comprehensive Cardiovascular Evaluation

Jordan JH et al. JACC Cardiovasc Imaging. 2018;11:1150-1172.

Löffler, Salerno M. J Nucl Cardiol. 2018;25:2148-2158.

Physiologic Measures of CV Reserve: Exercise Testing

Age (years) Jones LW et al. J Clin Oncol. 2012;30:2530-2537.

What else can we do about cardiotoxicity?

- LVEF - STRAIN?

- MULTI-MODALITY IMAGING?
- BLOOD BIOMARKERS

Blood Biomarkers

Elevated Troponin I After Anthracyclines Indicates Risk

Blood Biomarkers

Elevated Natriuretic Peptides with Proteosome Inhibitors Indicate Risk

CHF=congestive heart failure; CVAE=cardiovascular adverse event. Cornell RF et al. *J Clin Oncol*. 2019;37:1946-1955.

TABLE 4.	Multivariable	Competing	Risk Analysis	for Predictors of First	CVAE
Effect				HR (95% CT)	Р

3.0 (1.1 to 8.4)	.04
4.1 (2.1 to 8.1)	, .001
9.5 (4.3 to 20.7)	, .001
0.5 (0.3 to 0.9)	.02
0.98 (0.6 to 1.5)	.9
	3.0 (1.1 to 8.4) 4.1 (2.1 to 8.1) 9.5 (4.3 to 20.7) 0.5 (0.3 to 0.9) 0.98 (0.6 to 1.5)

Blood Biomarkers

Elevated Troponin Predicts ICI Myocarditis

Mahmood, et al. *JACC* 2018 N = 35

Prior to Cancer Therapy

 Pre-existing cardiovascular disease During Cancer Therapy

 Treatment cardiotoxicity and multiple hit After Cancer Therapy

- Early-onset CVD
- Survivorship

Cancer Increases Risk for Subsequent CV Disease

- Survivors have a 10 times higher risk for coronary atherosclerosis
- Survivors have a 15 times higher risk of heart failure
- Survivors have a 9.3 times the risk for stroke
- Risks are particularly high among survivors who had received anthracycline drugs, such as doxorubicin, or high-dose radiation therapy to the chest as part of their cancer treatment

Early-onset Anthracycline Cardiomyopathy

CV Disease in Cancer Survivorship

CV Disease After Hodgkin's Treatment

Conclusions

- Growing number of cancer patients and survivors are at risk for developing CVD which threatens to undermine successes of cancer-specific outcomes
- Longitudinal studies are needed to characterize CV disease in cancer patients
- Improving awareness for baseline CV risk factors is the key, first step for CV risk attenuation in cancer
- Cardiac imaging- and blood-based assessment are helpful
 - Accuracy and reproducibility are crucial
 - Optimal use and timing have yet to be defined
- Collaborative efforts are needed to translate observational studies into prevention research
- Evidence-based guidelines must also address the cost effectiveness of screening recommendations

Thank You

Supplemental Resources Cardio-Oncology Approaches

CV risk stratification and prevention

Lyon AR et al. Eur Heart J. 2022; 43:4229-4361.

Anthracyclines and anti-HER2 therapies

VEGF inhibitors

0

BCR-ABL TKIs

....

Lyon AR et al. Eur Heart J. 2022; 43:4229-4361.

0

RAF-MEK inhibitors

0

HSCT Patients

0

Lyon AR et al. Eur Heart J. 2022; 43:4229-4361.