## Melanoma & Skin Cancers

## Sanjiv S. Agarwala, MD Professor, Temple University Philadelphia, USA CMO, Cancer Expert Now



# Disclosure of Conflict(s) of Interest

 Sanjiv S. Agarwala, MD reported no relevant financial relationships or relationships with ineligible companies of any amount during the past 24 months.





- Current Status of Melanoma Therapy
- Learnings from ASCO 2021



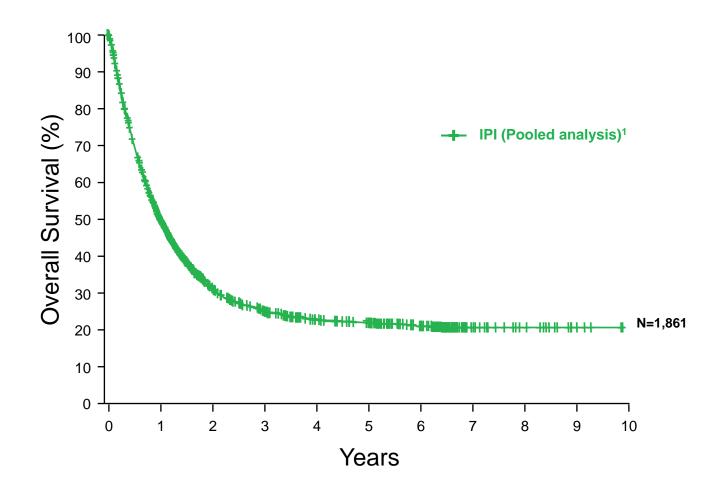


- Current Status of Melanoma Therapy
- Learnings from ASCO 2021



## Metastatic Melanoma

- Immunotherapy
  - Anti-PD1 (nivolumab, pembrolizumab)
  - Anti-PD1+Anti-CTLA4 (ipilimumab + nivolumab)


SCOS 2021 Annual Conference featuring

Highlights

ect

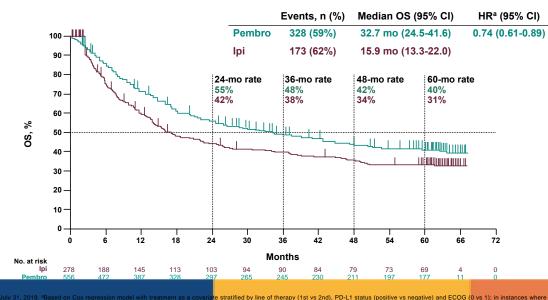
- Targeted Therapy
  - BRAF/MEK combinations
- Triple Therapy
  - BRAF/MEK/Anti-PD1

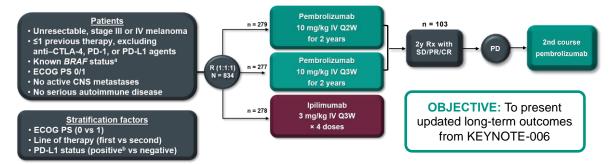
### Fare clic per modificare lo stile del titolo



1. Schadendorf et al. J Clin Oncol 2015;33:1889-1894; 2. Current analysis; 3. Poster presentation by Dr. Victoria Atkinson at SMR 2015 International Congress.

**SCOS 2021** Annual Conference featuring **ASCO** Direct<sup>®</sup> Highlights<sup>6</sup>

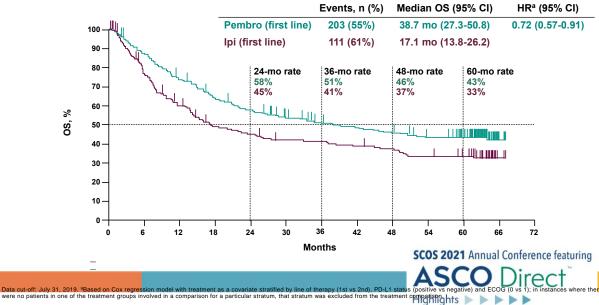

### **Long-Term Survival From Pembrolizumab Completion and Pembrolizumab Retreatment: Phase 3 KEYNOTE-006 in Advanced Melanoma**


G. V. Long<sup>1-4</sup>, J. Schachter<sup>5</sup>, A. Arance<sup>6</sup>, J.-J. Grob<sup>7</sup>, L. Mortier<sup>8</sup>, A. Daud<sup>9</sup>, M. S. Carlino<sup>1,2,10,11</sup>, A. Ribas<sup>12</sup>, C. M. McNeil<sup>2,13</sup>, M. Lotem<sup>14</sup>, J. Larkin<sup>15</sup>, P. Lorigan<sup>16</sup>, B. Nevns<sup>17</sup>, C. U. Blank<sup>18</sup>, T. M. Petrella<sup>19</sup>, O. Hamid<sup>20</sup>, E. Jensen<sup>21</sup>, C. Krepler<sup>21</sup>, S. J. Diede<sup>21</sup>, C. Robert<sup>22</sup>

#### ASCO 2020

<sup>1</sup>Melanoma Institute Australia, Sydney, NSW, Australia; <sup>2</sup>University of Sydney, Sydney, NSW, Australia; <sup>3</sup>Royal North Shore Hospital, Sydney, NSW, Australia; <sup>4</sup>Mater Hospital, North Sydney, NSW, Australia; <sup>5</sup>Sheba Medical Center, Tel HaShomer Hospital, Tel Aviv, Israel, <sup>6</sup>Hospital Clinic de Barcelona, Barcelona, Spain; <sup>7</sup>Aix Marseille University, Hôpital de la Timone, Marseille, France; <sup>8</sup>Université Lille, Centre Hospitalier Regional Universitaire de Lille, Lille, France; <sup>9</sup>UCSF, San Francisco, CA, USA; <sup>10</sup>Blacktown Hospital, Blacktown, NSW, Australia; <sup>11</sup>Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, NSW, Australia; 12David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; 13Chris O'Brien Lifehouse, Camperdown, NSW, Australia; 14Sharett Institute of Oncology, Hadassah Hebrew Medical Center, Jerusalem, Israel; 15 Royal Marsden Hospital, London, England; 16 University of Manchester and the Christie NHS Foundation Trust, Manchester, England; <sup>17</sup>Universitair Ziekenhuis Brussel, Brussels, Belgium; <sup>18</sup>Netherlands Cancer Institute, Amsterdam, Netherlands; <sup>19</sup>Sunnybrook Health Sciences Centre, Toronto, ON, Canada; <sup>20</sup>The Angeles Clinic and Research Institute, Los Angeles, CA, USA; <sup>21</sup>Merck & Co., Inc. Kenilworth, NJ, USA; <sup>22</sup>Gustave Roussy and Paris-Sud University, Villejuif, France

### **Overall Survival: Total Population**



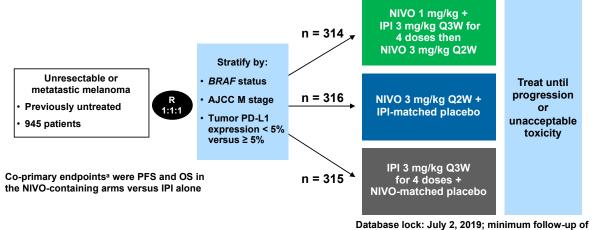



- Two pembrolizumab arms pooled as similar efficacy<sup>2</sup>
- Patients completing ≥94 weeks of pembrolizumab with SD/PR/CR were considered to have completed 2 years of treatment
- Patients could receive a 2<sup>nd</sup> course of 1 year of pembrolizumab if progressed after SD/PR/CR
- Data cut-off: July 31, 2019; median follow-up: 66.8 months (range, 65.0-70.4); • time from last patient enrolled to data cutoff, 65.0 months

Prior anti-BRAF therapy was not required for patients with normal LDH levels and no clinically significant tumor-related symptoms or evidence of rapidly progressing disease. <sup>b</sup>Defined as ≥1% staining in tumor and adjacent immune cells as assessed by IHC using 22C3 antibody.

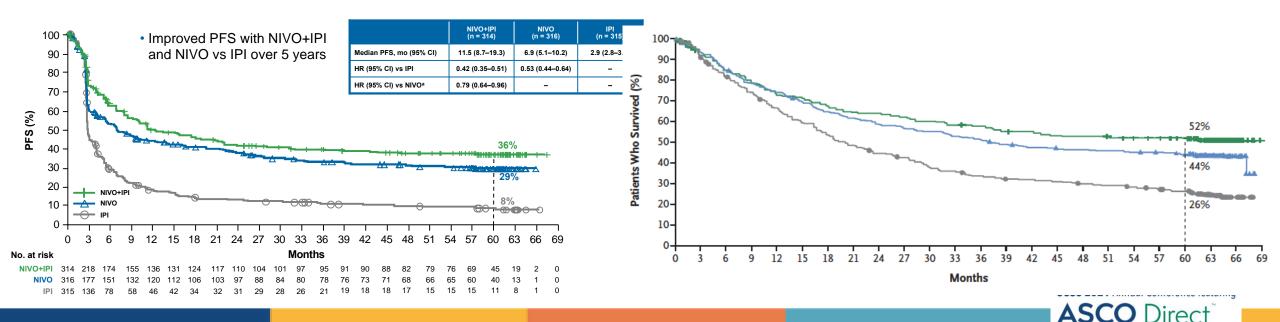
#### **Overall Survival: First Line Patients**




were no patients in one of the treatment groups involved in a comparison for a particular stratum, that stratum was excluded from the treatment comparison

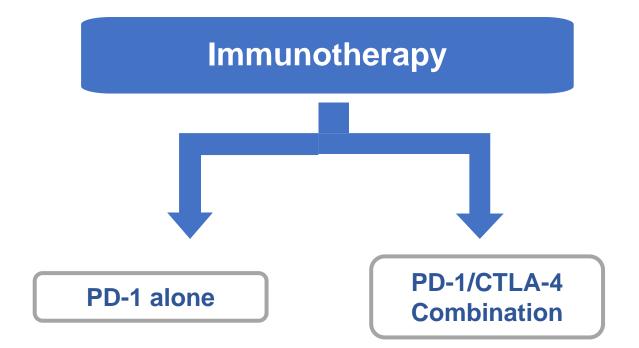


### Five-Year Survival Outcomes of the CheckMate 067 Phase 3 Trial of Nivolumab Plus Ipilimumab Combination Therapy in Advanced Melanoma


James Larkin,<sup>1</sup> Vanna Chiarion-Sileni,<sup>2</sup> Rene Gonzalez,<sup>3</sup> Jean-Jacques Grob,<sup>4</sup> Piotr Rutkowski,<sup>5</sup> Christopher D. Lao,<sup>6</sup> C. Lance Cowey,<sup>7</sup> Dirk Schadendorf,<sup>8</sup> John Wagstaff,<sup>9</sup> Reinhard Dummer,<sup>10</sup> Pier F. Ferrucci,<sup>11</sup> Michael Smylie,<sup>12</sup> David Hogg,<sup>13</sup> Andrew Hill,<sup>14</sup> Ivan Márquez-Rodas,<sup>15</sup> John Haanen,<sup>16</sup> Jasmine I. Rizzo,<sup>17</sup> Agnes Balogh,<sup>17</sup> Andriy Moshyk,<sup>17</sup> F. Stephen Hodi,<sup>18\*</sup> Jedd Wolchok<sup>19\*</sup>

<sup>1</sup>The Royal Marsden NHS Foundation Trust, London, UK; <sup>2</sup>Oncology Institute of Veneto IRCCS, Padua, Italy; <sup>3</sup>University of Colorado Cancer Center, Aurora, CO, USA; <sup>4</sup>Aix-Marseille University, APHM Hospital, Marseille, France; <sup>5</sup>Maria Sklodowska-Curie Institute - Oncology Center, Warsaw, Poland; <sup>6</sup>University of Michigan, Ann Arbor, MI, USA; <sup>7</sup>Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas, TX, USA; <sup>8</sup>Department of Dermatology, University of Essen, Essen, Germany; & German Cancer Consortium, Heidelberg, Germany; <sup>9</sup>The College of Medicine, Swansea University, Swansea, UK; <sup>10</sup>Universitäts Spital, Zurich, Switzerland; <sup>11</sup>European Institute of Oncology, Milan, Italy; <sup>12</sup>Cross Cancer Institute, Alberta, Canada; <sup>13</sup>Princess Margaret Cancer Center, Toronto, ON, Canada; <sup>14</sup>Tasman Oncology Research, QLD, Australia; <sup>15</sup>General University Hospital Gregorio Marañon, Madrid, Spain; <sup>16</sup>The Netherlands Cancer Institute, Amsterdam, The Netherlands; <sup>17</sup>Bristol-Myers Squibb, Princeton, NJ; USA, <sup>18</sup>Dana-Farber Cancer Institute, Boston, MA; USA, <sup>19</sup>Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA \*Contributed equally.




60 months for all patients

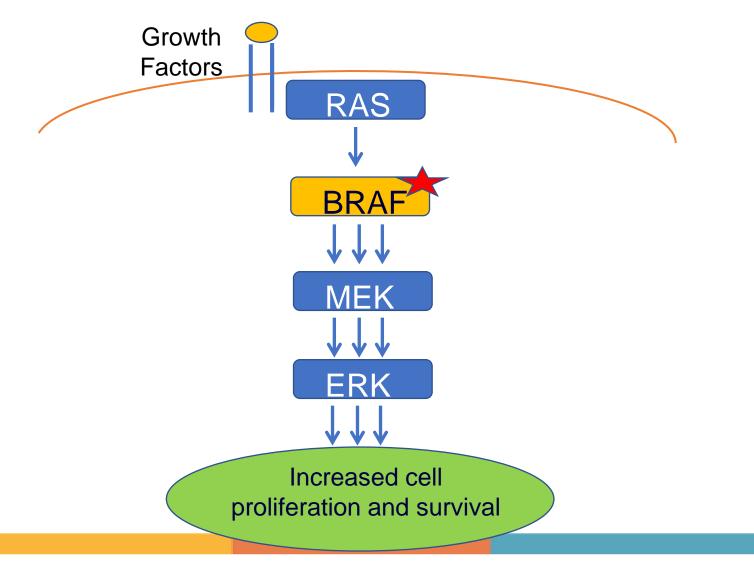
Highlights 🕨




Larkin J et al. ESMO 2019. Abstract LBA68. Larkin J et al. N Engl J Med. 2019.

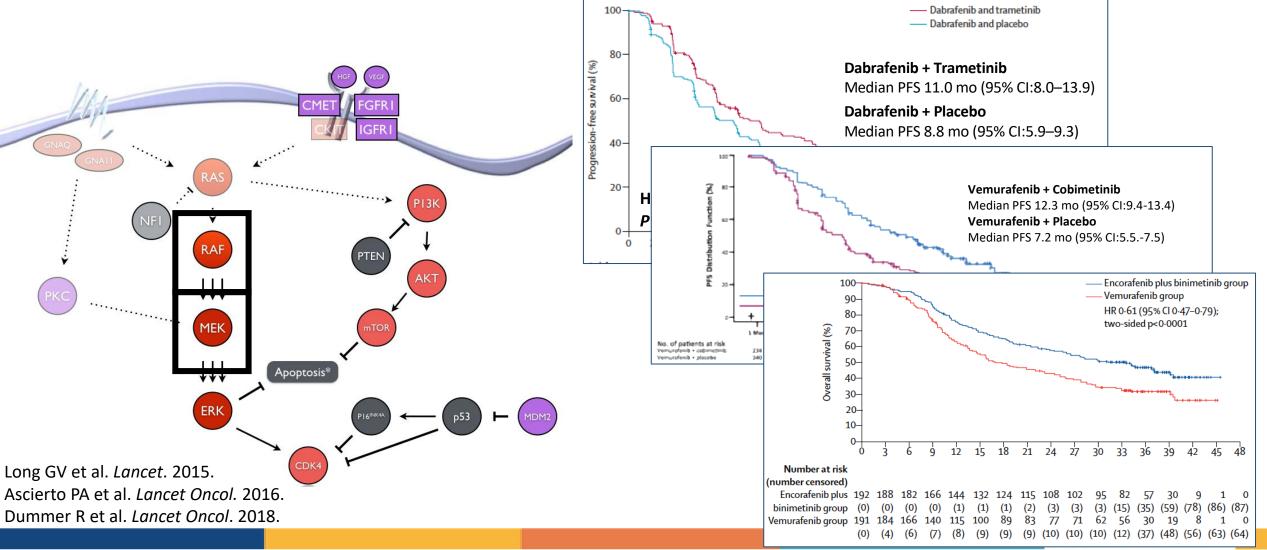
# Combination or monotherapy?





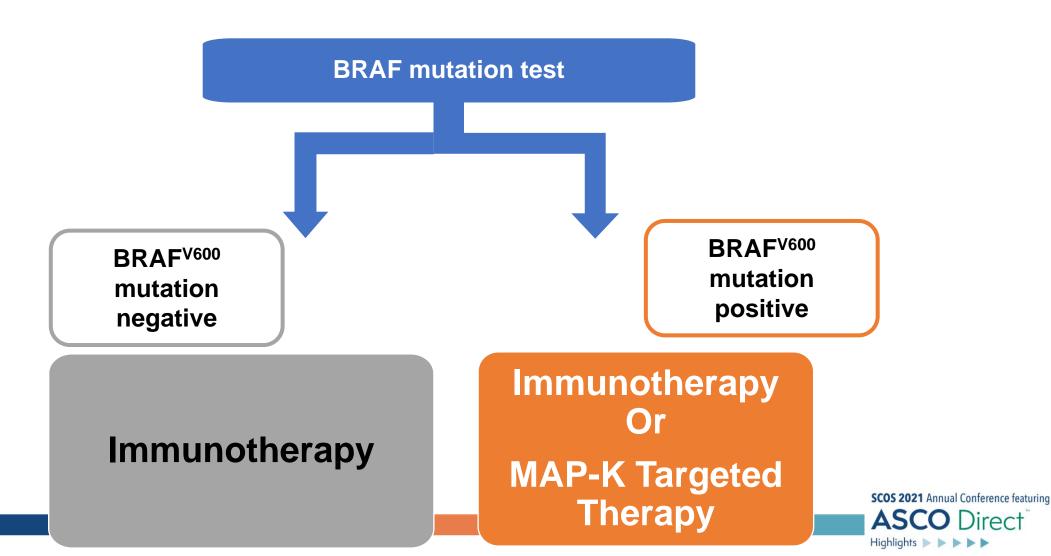

# Targeted Therapy: MAPK Pathway



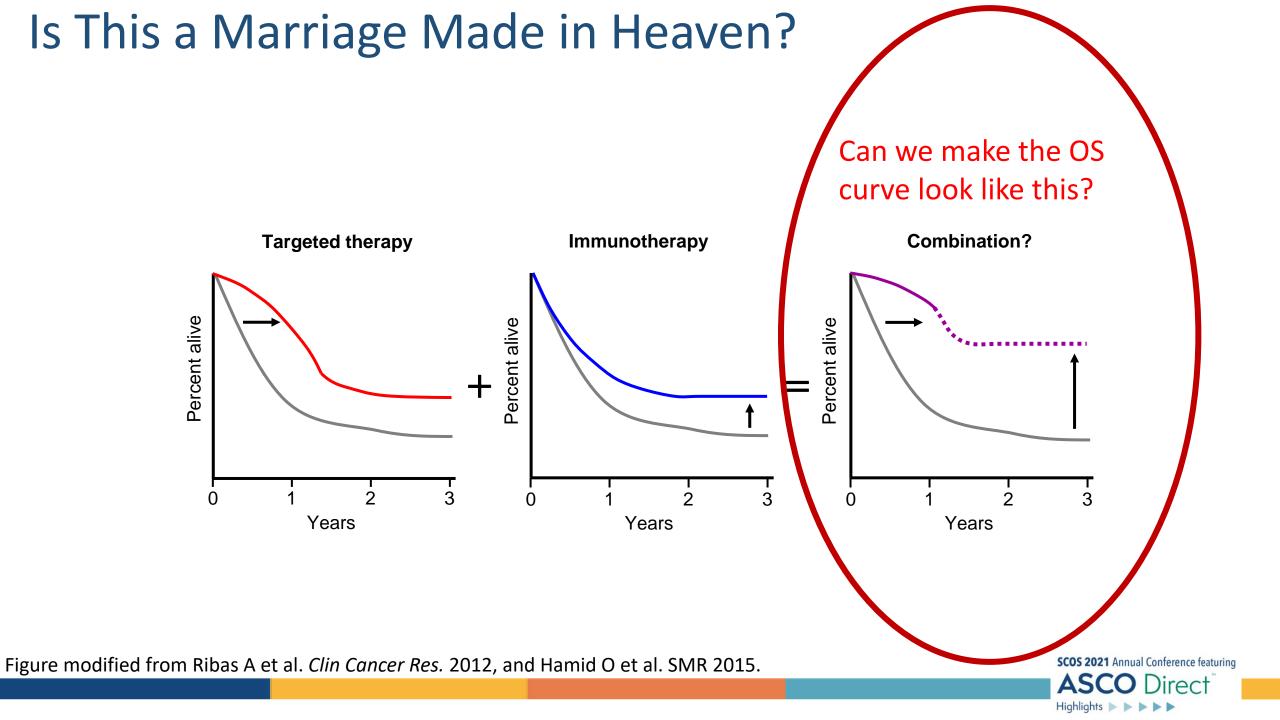

SCOS 2021 Annual Conference featuring ASCO Direct Highlights

## **BRAF** Mutation




SCOS 2021 Annual Conference featuring ASCO Direct

## Dual BRAF and MEK Inhibition Is Associated With High Response Rates and Improved PFS and OS




Highlights **> > > > >** 

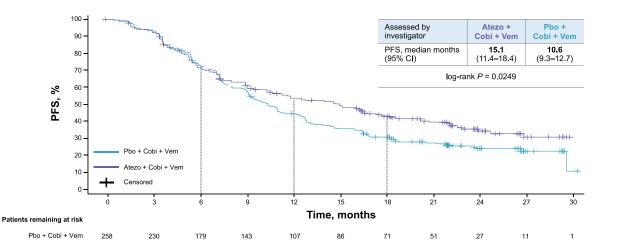
# Melanoma Therapy **Decision Point**



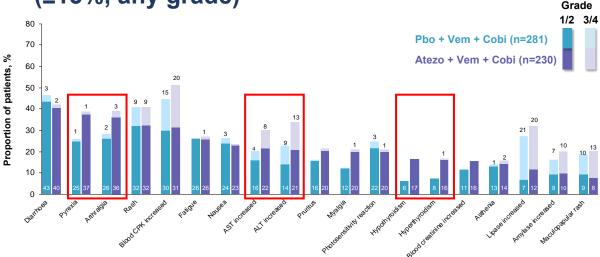
Direct



### Evaluation of Atezolizumab, Cobimetinib, and Vemurafenib in Previously Untreated Patients With *BRAF*<sup>V600</sup> Mutation–Positive Advanced Melanoma: Primary Results From the Phase 3 IMspire150 Trial

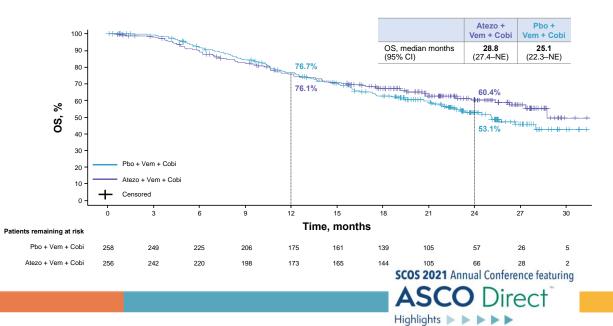

Grant A. McArthur, M.B., B.S., Ph.D.,<sup>1</sup> Daniil Stroyakovskiy, M.D.,<sup>2</sup> Helen Gogas, M.D., Ph.D.,<sup>3</sup> Caroline Robert, M.D., Ph.D.,<sup>4</sup> Karl Lewis, M.D.,<sup>5</sup> Svetlana Protsenko, M.D.,<sup>6</sup> Rodrigo Pereira, M.D.,<sup>7</sup> Thomas Eigentler, M.D.,<sup>8</sup> Piotr Rutkowski, M.D., Ph.D.,<sup>9</sup> Lev Demidov, M.D.,<sup>10</sup> Georgy Moiseevich Manikhas, M.D.,<sup>11</sup> Yibing Yan,<sup>12</sup> Kuan-Chieh Huang, Ph.D.,<sup>12</sup> Anne Uyei, M.D.,<sup>12</sup> Virginia McNally, Ph.D.,<sup>13</sup> Ralf Gutzmer, M.D.,<sup>14</sup> Paolo Ascierto, M.D.<sup>15</sup>

#### AACR Annual Meeting 2020


<sup>1</sup>Melanoma and Skin Service and Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; <sup>2</sup>Moscow City Oncology Hospital #62 of Moscow Healthcare Department, Moscow, Russia; <sup>3</sup>First Department of Medicine, Laiko General Hospital, National and Kapodistrian University of Athens, Greece; <sup>4</sup>Gustave Roussy and Université Paris-Saclay, Villejuif-Paris, France; <sup>5</sup>University of Colorado Comprehensive Cancer Center, Aurora, CO, USA; <sup>6</sup>Department of Chemotherapy and Innovative Technologies, N. N. Petro National Medical Research Center of Oncology, St. Petersburg, Russia; <sup>7</sup>Hospital das Clinicas, Porto Alegre, Brazil; <sup>8</sup>University Hospital Tübingen, Germany; <sup>9</sup>Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; <sup>10</sup>N. N. Blokhin Russia; <sup>11</sup>St. Petersburg Oncology Hospital, St. Petersburg, Russia; <sup>12</sup>Genentech, Inc., South San Francisco, CA, USA; <sup>13</sup>Roche Products Ltd., Welwyn Garden City, UK; <sup>14</sup>Haut-Tumour-Zentrum Hannover (HZH), Klinik für Dermatlogie, Allergologie und Venerologie, Medizinische Hochschule Hannover (MHH), Hannover, Germany; <sup>15</sup>Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale," Naples, Italy.

AACR Annual Meeting 2020

IMspire150: Primary Endpoint: Investigator-Assessed PFS

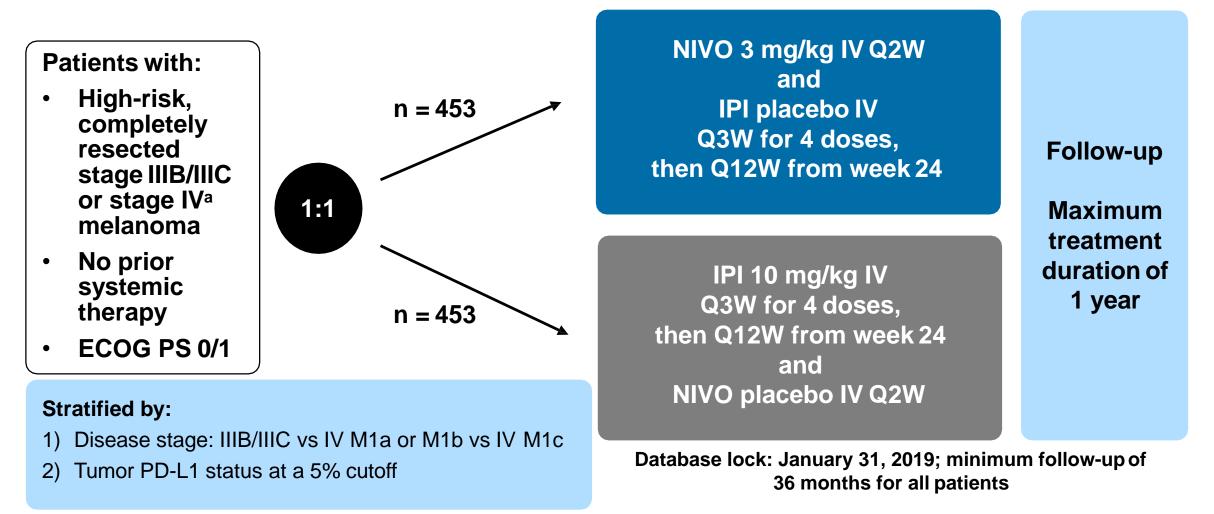



## Common Treatment-Related AEs (≥15%, any grade)



AE, adverse event; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CPK, creatine phosphokinase. Listed AEs were reported at a frequency of ≥15%, along with corresponding frequencies for grade 3/4 events.

#### IMspire150: Overall Survival

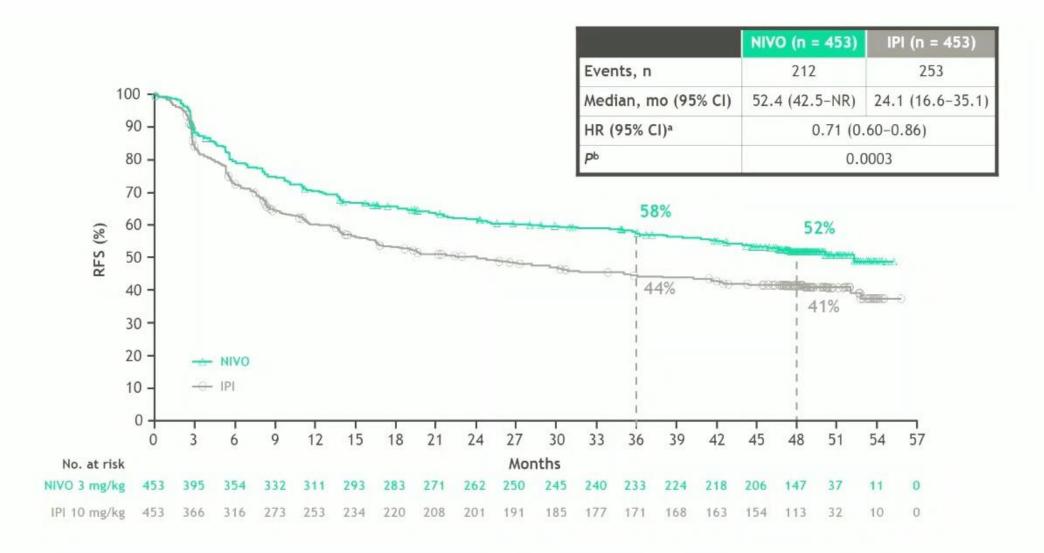



# Adjuvant Therapy

- Immunotherapy
  - Anti-PD1 (nivolumab, pembrolizumab)
- Targeted Therapy
  - BRAF/MEK combinations



## CheckMate 238: Study Design

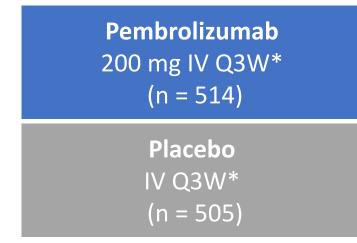



#### Primary endpoint: RFS

NCT02388906.ªPer American Joint Committee on Cancer (AJCC) Cancer Staging Manual, seventh edition.

SCOS 2021 Annual Conference featuring ASCO Direct Highlights

### Primary endpoint: 48-month RFS in all patients

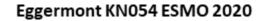



<sup>a</sup>Stratified; <sup>b</sup>Log-rank test. NR, not yet reached.

# KEYNOTE-054: Adjuvant Pembrolizumab vs Placebo for Stage III Melanoma (Part 1)

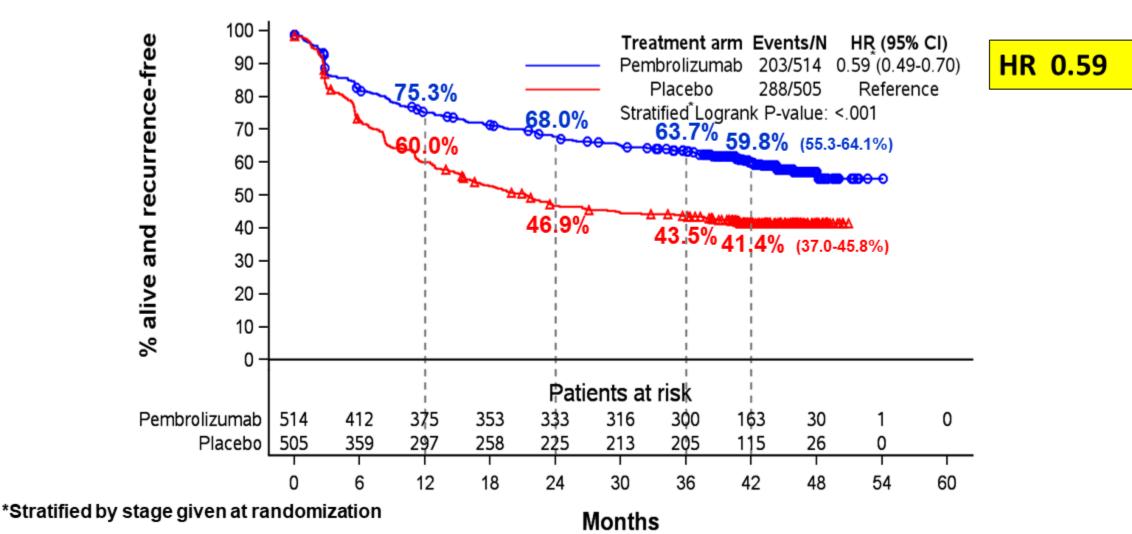
• Randomized, double-blind phase III study

Patients with resected high-risk stage IIIA, B, C melanoma (N = 1019)




Treatment administered 18 doses (~ 1 yr) or until recurrence, unacceptable toxicity, or withdrawal

\*Patients with recurrence eligible for crossover or repeat treatment with pembrolizumab.


- Coprimary endpoints: RFS in ITT population, RFS in PD-L1+ subgroup
- Secondary endpoints: DMFS, OS, safety, QoL





## Updated RFS analysis (ESMO 2020)

• Cut-off date (3-Apr-2020); median duration of follow-up: 3.5 years; 491 RFS events





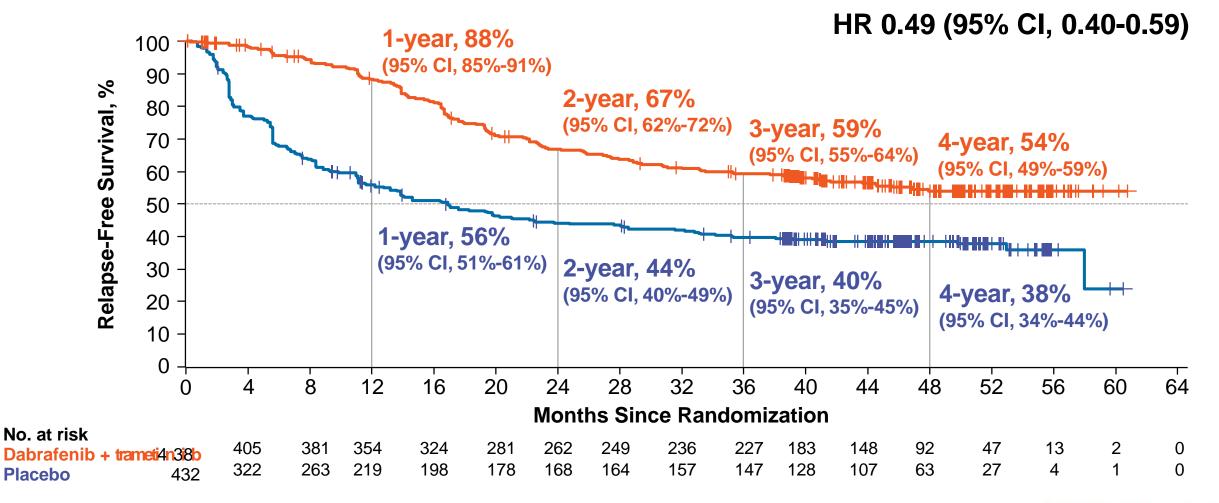
The future of cancer therapy

## Adjuvant Therapy: Combi-AD: Study Design

### Key eligibility criteria

- Completely resected stage IIIA (lymph node metastasis > 1 mm), IIIB, or IIIC cutaneous melanoma
- BRAF V600E/K mutation
- ECOG performance status 0 or 1
- No prior radiotherapy or systemic therapy
- Tissue collection was mandatory at baseline and optional upon recurrence

#### Stratification


- BRAF mutation status (V600E, V600K)
- Disease stage (IIIA, IIIB, IIIC)



**Primary analysis Updated analysis** R D+T median FU, D+T median FU, Α 33 months 44 months Dabrafenib 150 mg Ν D BID + trametinib 2 mg 0 QD Μ (n = 438)1:1 Ζ Α 2 matched placebos т (n = 432)0 Ν Treatment duration: Primary endpoint: RFS 12 months Secondary endpoints: OS, N = 870DMFS. FFR, safety

PRESENTED BAGY CONGAT ESMO 2018

## COMBI-A/D: RELAPSE-FREE SURVIVAL



SCOS 2021 Annual Conference featuring

Direct



- Current Status of Melanoma Therapy
- Learnings from ASCO 2021



# Learnings from ASCO 2021

SCOS 2021 Annual Conference featuring

Highlights 🕨

rect

- Front line therapy
  - Any new options?
- Data after immunotherapy failure
  - Major unmet need
- Neoadjuvant therapy

# Learnings from ASCO 2021

SCOS 2021 Annual Conference featuring

Highlights 🕨

rect

- Front line therapy
  - Any new options?
- Data after immunotherapy failure
  - Major unmet need
- Neoadjuvant therapy



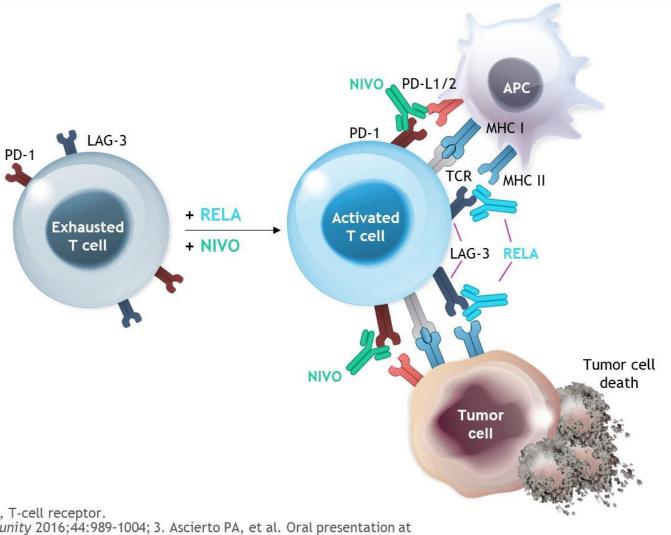
## Relatlimab (RELA) + nivolumab (NIVO) versus NIVO in first-line advanced melanoma: primary phase 3 results from **RELA**TIVITY-047 (CA224-047)

Evan J. Lipson,<sup>1</sup> Hussein A. Tawbi,<sup>2</sup> Dirk Schadendorf,<sup>3</sup> Paolo A. Ascierto,<sup>4</sup> Luis Matamala,<sup>5</sup> Erika Castillo Gutiérrez,<sup>6</sup> Piotr Rutkowski,<sup>7</sup> Helen J. Gogas,<sup>8</sup> Christopher D. Lao,<sup>9</sup> Juliana Janoski De Menezes,<sup>10</sup> Stéphane Dalle,<sup>11</sup> Ana Arance,<sup>12</sup> Jean-Jacques Grob,<sup>13</sup> Shivani Srivastava,<sup>14</sup> Mena Abaskharoun,<sup>14</sup> Katy L. Simonsen,<sup>14</sup> Bin Li,<sup>14</sup> Georgina V. Long,<sup>a,15</sup> F. Stephen Hodi<sup>a,16</sup>

<sup>1</sup>Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA; <sup>2</sup>The University of Texas MD Anderson Cancer Center, Houston, TX, USA; <sup>3</sup>University Hospital Essen, Essen, Germany; <sup>4</sup>Istituto Nazionale Tumori Fondazione "G. Pascale", Napoli, Italy; <sup>5</sup>Instituto Oncologico Fundacion Arturo Lopez Perez, Santiago, Chile; <sup>6</sup>FAICIC Clinical Research, Veracruz, Mexico; <sup>7</sup>Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland; <sup>8</sup>National and Kapodistrian University of Athens, Athens, Greece; <sup>9</sup>University of Michigan, Ann Arbor, MI, USA; <sup>10</sup>Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil; <sup>11</sup>Hospices Civils de Lyon, Cancer Research Center of Lyon, Pierre-Bénite, France; <sup>12</sup>Hospital Clinic Barcelona, Barcelona, Spain; <sup>13</sup>Aix-Marseille University, CHU Timone, Marseille, France; <sup>14</sup>Bristol Myers Squibb, Princeton, NJ, USA; <sup>15</sup>Melanoma Institute Australia, The University of Sydney, and Royal North Shore and Mater Hospitals, Sydney, Australia; <sup>16</sup>Dana-Farber Cancer Institute, Boston, MA, USA <sup>a</sup>Co-senior author



Presentation Number 9503


3

Direct

Highlights 🕨

## Rationale for RELA + NIVO

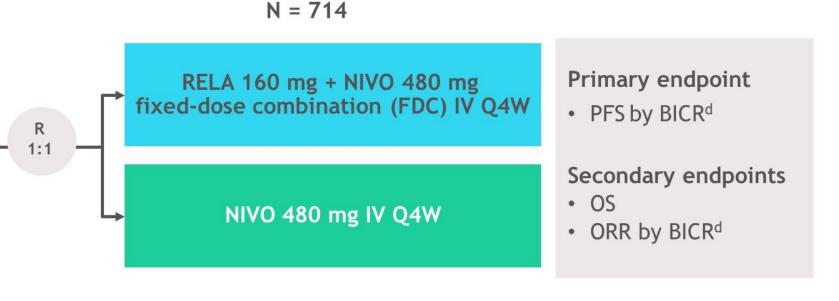
- LAG-3 and PD-1 are distinct immune checkpoints, often co-expressed on tumor-infiltrating lymphocytes, and contribute to tumor-mediated T-cell exhaustion<sup>1,2</sup>
- In preclinical models, LAG-3 and PD-1 blockade demonstrated synergistic antitumor activity<sup>1</sup>
- RELA + NIVO demonstrated clinically meaningful antitumor activity including durable objective responses and was well tolerated in patients with melanoma that was relapsed/refractory to anti-PD-1 therapy<sup>3,4</sup>



APC, antigen-presenting cell; MHC, major histocompatibility complex; TCR, T-cell receptor. 1. Woo S-R, et al. *Cancer Res* 2012;72:917-927; 2. Anderson AC, et al. *Immunity* 2016;44:989-1004; 3. Ascierto PA, et al. Oral presentation at ASCO Annual Meeting; June 2-6, 2017; Chicago, IL. Abstract 9520; 4. Ascierto PA, et al. Oral presentation at ESMO Congress; September 8-12, 2017; Madrid, Spain. Abstract LBA18.

### Study design

• **RELATIVITY-047** is a global, randomized, double-blind, phase 2/3 study


#### Key eligibility criteria

 Previously untreated unresectable or metastatic melanoma<sup>a</sup>

#### • ECOG PS 0-1

Stratification factors

- LAG-3<sup>b</sup>
- PD-L1<sup>c</sup>
- BRAF
- AJCC v8 M stage



AJCC, American Joint Committee on Cancer; BICR, blinded independent central review; CTLA-4, cytotoxic T lymphocyte antigen-4; ECOG PS, Eastern Cooperative Oncology Group performance status; IHC, immunohistochemistry; IV, intravenous; ORR, overall response rate; Q4W, every 4 weeks; R, randomization. ClinicalTrials.gov: NCT03470922; Lipson E, et al. Poster presentation at ESMO Congress; October 19-23, 2018; Munich, Germany. Abstract 1302TiP. <sup>a</sup>Prior adjuvant/neoadjuvant treatment permitted (anti-PD-1 or anti-CTLA-4 permitted if at least 6 months between the last dose and recurrence; interferon therapy permitted if the last dose was at least 6 weeks before randomization); <sup>b</sup>LAG-3 expression on immune cells was determined using an analytically validated IHC assay (LabCorp); <sup>c</sup>PD-L1 expression on tumor cells was determined using the validated Agilent/Dako PD-L1 IHC 28-8 pharmDx test; <sup>d</sup>First tumor assessment (RECIST v1.1) performed 12 weeks after randomization, every 8 weeks up to 52 weeks, and then every 12 weeks. Database lock date: March 9, 2021.



4

Highlights **>** 

# RELATIVITY 047 demonstrated superior PFS benefit by BICR for RELA + NIVO FDC vs NIVO



CI, confidence interval; HR, hazard ratio.

All randomized patients. Statistical model for HR and P value: stratified Cox proportional hazard model and stratified log-rank test. Stratified by LAG-3 ( $\geq$  1% vs < 1%), BRAF (mutation positive vs mutation wild-type), AJCC M stage (M0/M1any[0] vs M1any[1]). PD-L1 was removed from stratification because it led to subgroups with < 10 patients.

12

**ASCO** Direct

Highlights > > > > >



### Immune-mediated adverse events

|                                                     | RELA + NIVO (n = 355) |           | NIVO (n = 359) |           |
|-----------------------------------------------------|-----------------------|-----------|----------------|-----------|
| Immune-mediated AE category <sup>a</sup> ,<br>n (%) | Any grade             | Grade 3-4 | Any grade      | Grade 3-4 |
| Hypothyroidism/thyroiditis                          | 64 (18.0)             | 0         | 50 (13.9)      | 0         |
| Rash                                                | 33 (9.3)              | 2 (0.6)   | 24 (6.7)       | 5 (1.4)   |
| Diarrhea/colitis                                    | 24 (6.8)              | 4 (1.1)   | 11 (3.1)       | 5 (1.4)   |
| Hyperthyroidism                                     | 22 (6.2)              | 0         | 24 (6.7)       | 0         |
| Hepatitis                                           | 20 (5.6)              | 14 (3.9)  | 9 (2.5)        | 4 (1.1)   |
| Adrenal insufficiency                               | 15 (4.2)              | 5 (1.4)   | 3 (0.8)        | 0         |
| Pneumonitis                                         | 13 (3.7)              | 2 (0.6)   | 6 (1.7)        | 2 (0.6)   |
| Hypophysitis                                        | 9 (2.5)               | 1 (0.3)   | 3 (0.8)        | 1 (0.3)   |
| Nephritis and renal dysfunction                     | 7 (2.0)               | 4 (1.1)   | 5 (1.4)        | 4 (1.1)   |
| Hypersensitivity                                    | 4 (1.1)               | 0         | 4 (1.1)        | 0         |

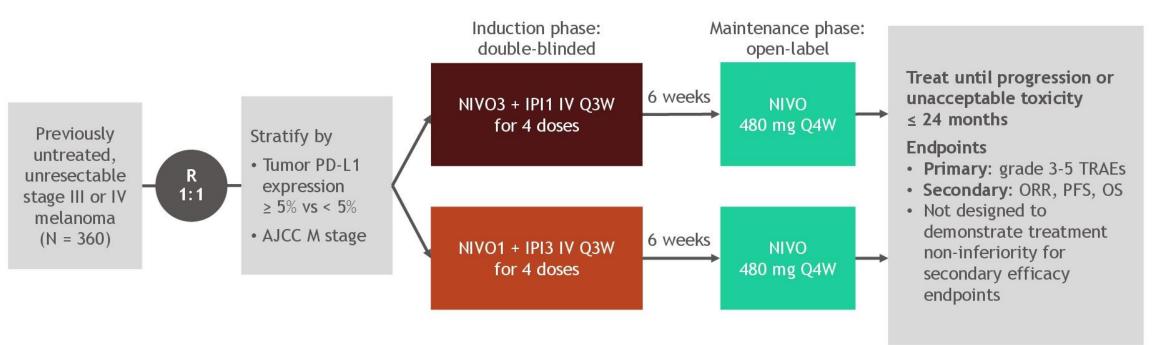
Additional AE of interest: myocarditis (any grade) occurred in 5 (1.7%) patients with RELA + NIVO and 2 (0.6%) with NIVO. Troponin monitoring was performed for the first 2 months of treatment per protocol

alncludes AEs of any grade occurring in ≥ 1% of patients considered by investigators to be potentially immune-mediated that met the following criteria: occurred within 100 days of the last dose, regardless of causality, treated with immune-modulating medication with no clear alternate etiology, or had an immune-mediated component.

16

Direct

Highlights > > > > >


### Summary

- In RELATIVITY-047, RELA + NIVO as a fixed-dose combination (FDC) demonstrated superior PFS by BICR, with more than a doubling of improvement in median PFS compared with NIVO alone
  - Median PFS 10.12 vs 4.63 months (HR [95% CI] vs NIVO: 0.75 [0.62-0.92]; P = 0.0055)
  - PFS favored RELA + NIVO FDC across key prespecified subgroups
  - OS and ORR remain blinded
- RELA + NIVO FDC demonstrated a manageable safety profile without unexpected safety signals
  - Grade 3/4 TRAEs occurred in 18.9% with RELA + NIVO FDC vs 9.7% with NIVO
- RELATIVITY-047 is the first phase 3 study to validate dual LAG-3 and PD-1 inhibition
- RELA + NIVO FDC is a potential new treatment option for patients with advanced melanoma, bringing the benefits of dual checkpoint inhibition to more patients

Direct

Highlights  $\triangleright$   $\triangleright$   $\triangleright$ 

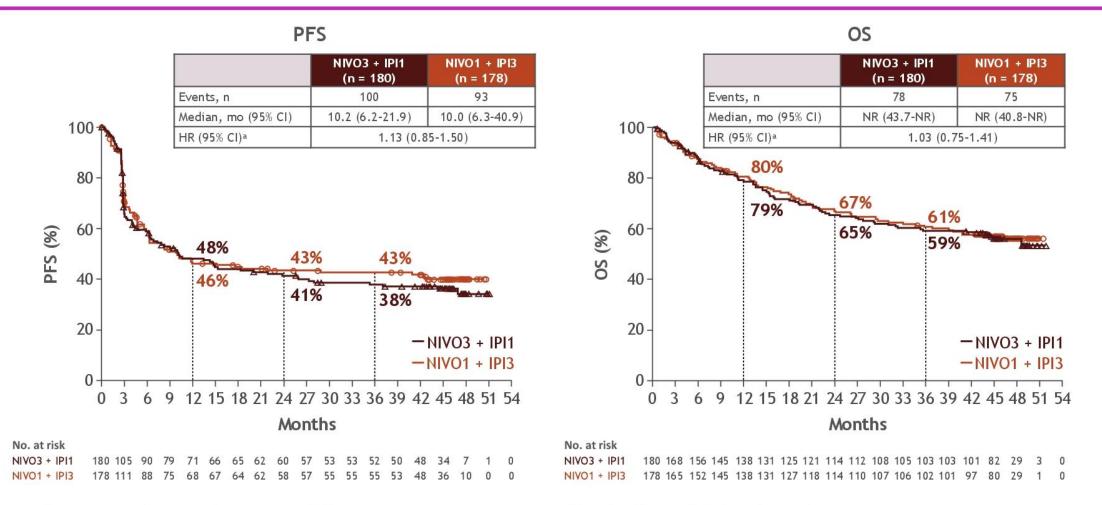
### Phase 3b/4 CheckMate 511 study: 3-year analysis



- Database lock, September 2020; minimum follow-up, 3 years
- Median duration of therapy over both study phases: 4.4 months with NIVO3 + IPI1; 2.3 months with NIVO1 + IPI3
  - 20% and 15% of patients, respectively, completed the full 2 years of treatment
- Maintenance NIVO therapy was initiated by 57% and 42% of patients, respectively
- Baseline characteristics were generally well balanced

NCT02714218. AJCC, American Joint Committee on Cancer; IPI, ipilimumab; IV, intravenous; M stage, metastatic disease stage; NIVO, nivolumab; ORR, objective response rate; OS, overall survival; PD-L1, programmed death ligand 1; PFS, progression-free survival; Q3W, every 3 weeks; Q4W, every 4 weeks; TRAE, treatment-related adverse event.

## Safety summary


| TRAE                                    | NIVO3 + IPI1<br>(n = 180) | NIVO1 + IPI3<br>(n = 178) |  |  |
|-----------------------------------------|---------------------------|---------------------------|--|--|
| Grade 3-5 TRAEs, n (%)                  | 61 (34)                   | 86 (48)                   |  |  |
| Difference (95% CI)                     | -14.4% (-2                | -14.4% (-24.5 to -4.3)    |  |  |
| P value (descriptive)                   | 0.0                       | 0.0059                    |  |  |
| TRAEs, n (%)                            |                           |                           |  |  |
| Grade 3-4                               | 60 (33)                   | 86 (48)                   |  |  |
| Grade 5                                 | 1 (1)ª                    | 0                         |  |  |
| Treatment-related serious AEs, n (%)    |                           |                           |  |  |
| Grade 3-4                               | 35 (19)                   | 60 (34)                   |  |  |
| Grade 5                                 | 1 (1)ª                    | 0                         |  |  |
| TRAEs leading to discontinuation, n (%) | 43 (24)                   | 60 (34)                   |  |  |
| Grade 3-4                               | 30 (17)                   | 50 (28)                   |  |  |
| Grade 5                                 | 1 (1) <sup>a</sup>        | 0                         |  |  |

• The most common TRAEs in both groups were diarrhea, fatigue, and pruritus

<sup>a</sup>Rhabdomyolysis and autoimmune myocarditis. AE, adverse event; CI, confidence interval.

3

### Survival outcomes



• Across patient subgroups, OS outcomes were generally similar with both regimens

<sup>a</sup>NIVO3 + IPI1 vs NIVO1 + IPI3. The study was not designed or powered to formally compare NIVO3 + IPI1 with NIVO1 + IPI3 for the secondary efficacy endpoints. All statistical analyses are descriptive only.

5

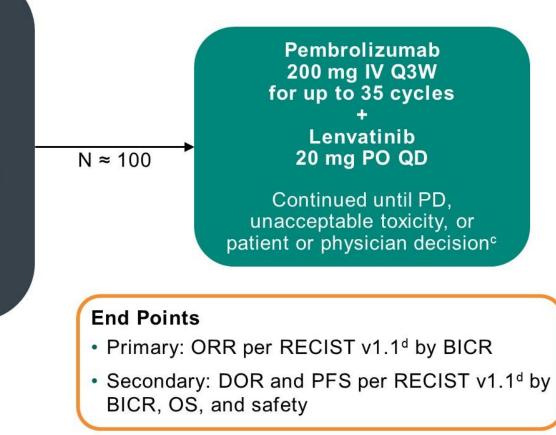
**ASCO** Direct

Highlights > > > > >

# Learnings from ASCO 2021

SCOS 2021 Annual Conference featuring

Highlights 🕨


rect

- Front line therapy
  - Any new options?
- Data after immunotherapy failure
  - Major unmet need
- Neoadjuvant therapy

## LEAP-004 Study Design (NCT03776136)

#### **Participants**

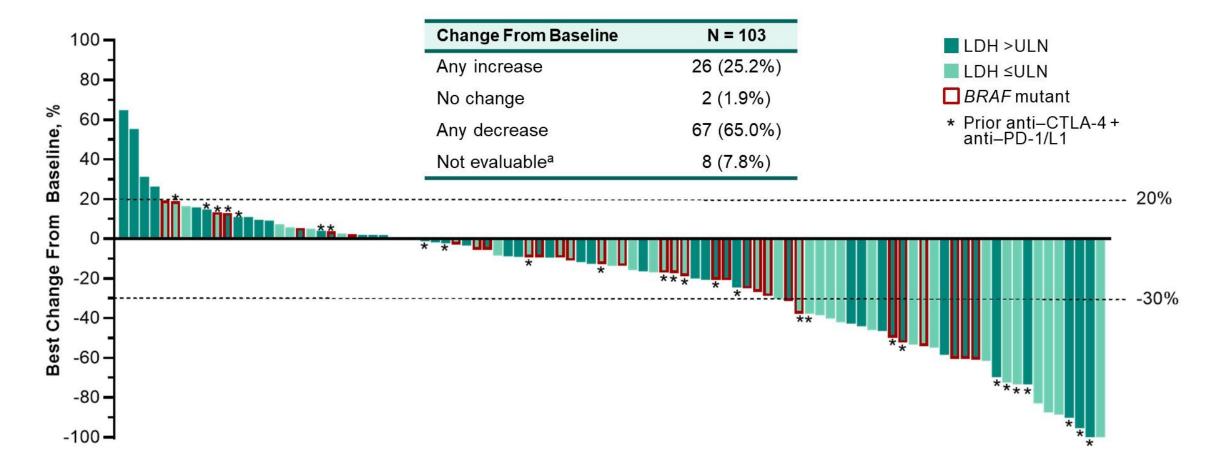
- Unresectable stage III or IV melanoma<sup>a</sup>
- Confirmed PD per iRECIST<sup>1b</sup> on or within 12 wk of last dose of anti–PD-1/L1 given alone or in combination (including with anti–CTLA-4) for ≥2 doses
  - ≤25% with PD on anti–CTLA-4 + anti–PD-1/L1
- No limit to number of previous therapies
- Measurable disease confirmed by blinded, independent central review (BICR)



<sup>a</sup>Per AJCC 8<sup>th</sup> edition. <sup>b</sup>In the absence of rapid clinical progression, initial evidence of radiologic PD required confirmation by a second assessment performed ≥4 weeks from first documented radiographic PD. <sup>c</sup>Eligible patients deriving clinical benefit can be treated beyond PD. Participants with CR can discontinue study treatment if they have received it for ≥24 weeks. <sup>d</sup>Modified to follow ≤10 target lesions total and ≤5 target lesions per organ. 1. Seymour L et al. *Lancet Oncol* 2017;18:e143-52.



## **BICR-Confirmed Response by RECIST v1.1**

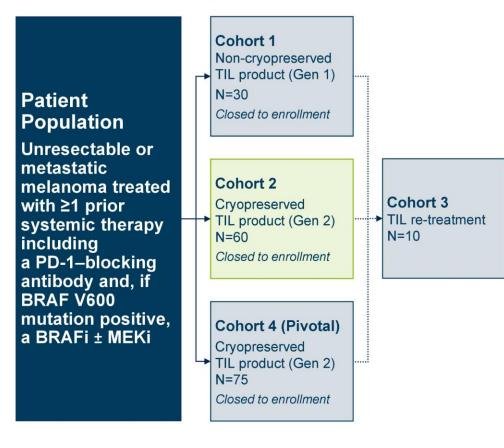

|                              | Total Population<br>N = 103 |                                                                 |
|------------------------------|-----------------------------|-----------------------------------------------------------------|
| ORR, % (95% CI)              | 21.4% (13.9-30.5)           | Compared With Initial Analysi                                   |
| DCR, % (95% CI)              | 66.0% (56.0-75.1)           | ORR remained the same     1 additional CR                       |
| Best overall response, n (%) |                             | <ul> <li>1 additional CR</li> <li>DCR increased from</li> </ul> |
| CR                           | 3 (2.9%)                    | 65.0% to 66.0%                                                  |
| PR                           | 19 (18.4%)                  | <ul> <li>1 additional SD</li> </ul>                             |
| SD                           | 46 (44.7%)                  |                                                                 |
| PD                           | 30 (29.1%)                  |                                                                 |
| Not assessed <sup>a</sup>    | 5 (4.9%)                    |                                                                 |

<sup>a</sup>Participants who had no post-baseline imaging assessments. Data cutoff date: Sep 18, 2020.

1. Arance A et al. Ann Oncol 2020;31(suppl\_4): S1142-S1215 [Abstr LBA44].



## **Best Change From Baseline in Target Lesions** (RECIST v1.1 by BICR)




<sup>a</sup>The 8 participants who did not have ≥1 post-baseline imaging assessment evaluable for change from baseline in target lesions are excluded from the graph. Data cutoff date: Sep 18, 2020.



## C-144-01 Study Design

Phase 2, multicenter study to assess the efficacy and safety of autologous TIL (lifileucel) for treatment of patients with metastatic melanoma (NCT02360579)



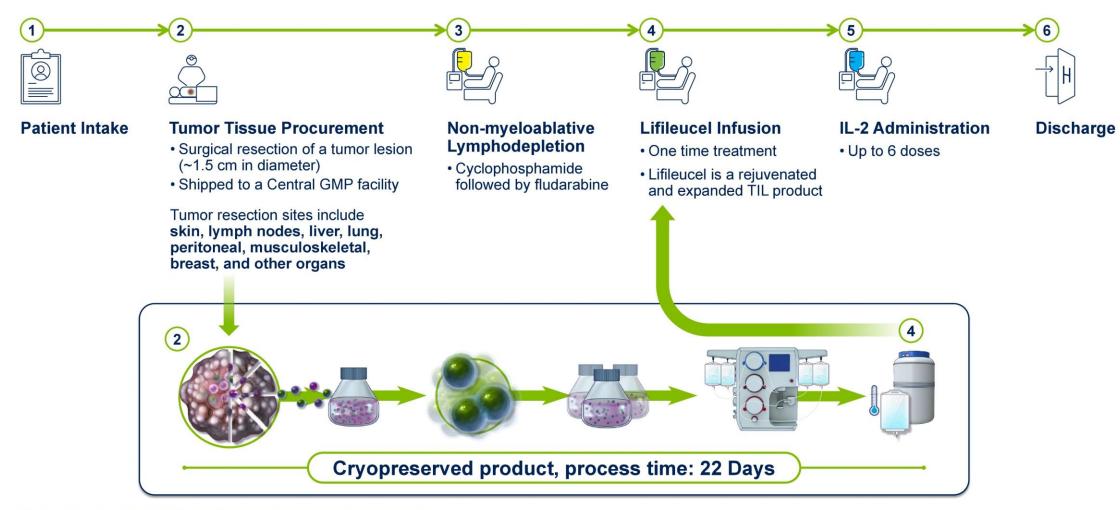
BRAFi, BRAF inhibitor; ECOG, Eastern Cooperative Oncology Group; MEKi, MEK inhibitor; ORR, objective response rate; PD-1, programmed cell death protein 1; RECIST, Response Evaluation Criteria in Solid Tumors; TIL, tumor infiltrating lymphocytes.

#### **Cohort 2 Endpoints**

- Primary: Efficacy per investigator-assessed ORR using RECIST 1.1
   response criteria
- · Secondary: Safety and additional parameters of efficacy

#### **Key Eligibility Criteria**

- Radiographic confirmation of progression
- One tumor lesion resectable for TIL generation (~1.5 cm in diameter) and ≥1 target tumor lesion for RECIST 1.1 response assessment
- Age ≥18 years at the time of consent
- ECOG performance status of 0–1


#### **Methods**

- Patients were enrolled from April 2017 to January 2019 at 26 sites across the US and EU
- · Concomitant anticancer therapy was not permitted
- Imaging-evaluable disease was required
- All responses required confirmation
- Data cutoff: 22 April 2021





## **Patient Journey and TIL Manufacturing**



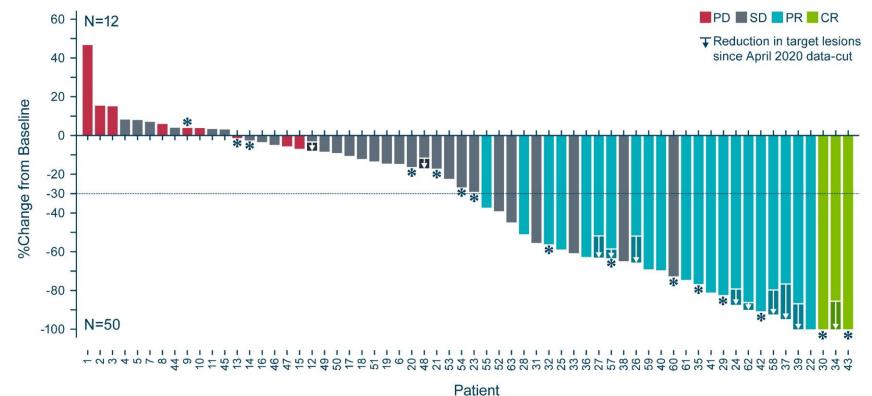
GMP, good manufacturing practices; IL-2, interleukin-2; NMA-LD, non-myeloablative lymphodepletion; TIL, tumor infiltrating lymphocytes.

SCOS 2021 Annual Conference featuring ASCO Direct Highlights

### **Objective Response Rate**

| Response, n (%)             | N=66        |
|-----------------------------|-------------|
| Objective Response Rate     | 24 (36.4)   |
| Complete response           | 3 (4.5)     |
| Partial response            | 21 (31.8)   |
| Stable disease              | 29 (43.9)   |
| Progressive disease         | 9 (13.6)    |
| Non-evaluable*              | 4 (6.1)     |
| Disease control rate        | 53 (80.3)   |
| Median Duration of Response | Not Reached |
| Min, max (months)           | 2.2, 38.5+  |

- Mean number of TIL cells infused:  $27.3 \times 10^9$
- After a median study follow-up of 33.1 months, median DOR was not reached (range 2.2, 38.5+ months)


\*Not evaluable due to not reaching first assessment. DOR, duration of response; SOD, sum of diameters; TIL, tumor-infiltrating lymphocytes.



7

### **Best Overall Response**

- 81% (50/62) of patients had a reduction in tumor burden
- 11 patients (17.7%) had further SOD reduction since April 2020 datacut



\*Patients with BRAF V600 mutation. 3 patients had no post-TIL disease assessment due to early death, and 1 due to start of new anticancer therapy. DOR, duration of response: SOD, sum of diameters: TIL, tumor infiltrating lymphocytes.



8

## Conclusions

- In heavily pretreated patients with advanced or metastatic melanoma who progressed on or after multiple prior therapies, including anti–PD-1 / anti–PD-L1 and BRAF/MEK inhibitors (if BRAF V600 mutant), lifileucel treatment resulted in:
  - 36.4% ORR
  - Median DOR not reached at median 33.1 months of study follow-up
- Responses deepened over time:
  - 11 patients (17.7%) demonstrated further reduction in SOD since April 2020 datacut
  - 1 patient converted from PR to CR at 24 months post lifileucel infusion
- Prior anti-PD-1 therapy:
  - Shorter duration of prior anti-PD-1 therapy maximizes DOR to lifileucel treatment
  - All newly diagnosed patients should be closely monitored for progression on anti-PD-1 therapy
  - Early intervention with lifileucel at the time of initial progression on anti–PD-1 agents may maximize benefit

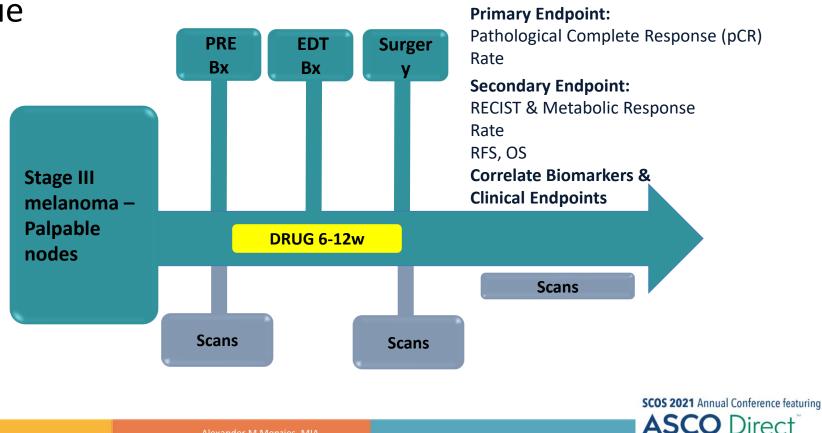
CR, complete response; DOR, duration of response; ORR, objective response rate; PD-1, programmed cell death protein-1; PD-L1, programmed death ligand-1; PR, partial response; SOD, sum of diameters; TIL, tumor-infiltrating lymphocytes.



15

## Learnings from ASCO 2021

SCOS 2021 Annual Conference featuring


Highlights 🕨

rect

- Front line therapy
  - Any new options?
- Data after immunotherapy failure
  - Major unmet need
- Neoadjuvant therapy

# Neoadjuvant model is well suited for melanoma

- Prototype tumor for drug development
- Accessible tissue
- Rapid results



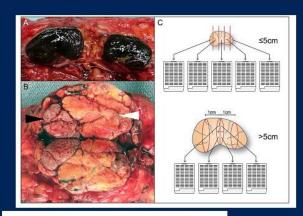
Highlights > > > > >

#### Early Melanoma Treatment Landscape (Neoadjuvant Therapy)

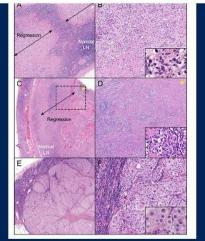
| Agent                                    | Trial [NCT]                                                            | Phase, N   | Setting (Stage)               | Endpoints              | Topline Result                                                                                                                                             | Key Takeaways                                                                                                                                                              |
|------------------------------------------|------------------------------------------------------------------------|------------|-------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NIVO ± IPI or<br>relatlimab <sup>1</sup> | [NCT02519322]                                                          | 2<br>N=53  | Neoadj/Adj (Stage<br>IIIB/IV) | Pathologic<br>response | NIVO + IPI: ORR 73%, pCR 45%, 73% gr 3 TRAEs;<br>nivo mono: ORR 25%, pCR 25%; 8% gr 3 TRAEs                                                                | First results to describe the feasibility of NAT immune checkpoint blockade in melanoma                                                                                    |
| Pembro <sup>2</sup>                      | [ <u>NCT02434354</u> ]                                                 | 1b<br>N=30 | Neoadj/Adj (Stage IV)         | AEs                    | <ul> <li>On histologic assessment, 8 of 27 patients (29.6%) had a complete or major PR after 1 pembro dose</li> <li>OS at 2 years: 93% DFS: 63%</li> </ul> | Despite the clinical success of checkpoint blockade, little is understood about the precise mechanism(s) of response or resistance to these treatments                     |
| NIVO + IPI <sup>1</sup>                  | OpACIN-neo (Arm B),<br>PRADO extension cohort<br>[ <u>NCT02977052]</u> | 2<br>N=186 | Neoadj/Adj (Stage III)        | RR, pRR                | Stage III melanoma pts randomized 1:1:1<br>Arm B: IPI + NIVO                                                                                               | <ul> <li>pRR of 77%; 3-y RFS, NAT arm, 80% vs AT arm, 60%</li> <li>pCR and RFS surrogate endpoints are compelling, but validation of these endpoints are needed</li> </ul> |

#### **Ongoing Clinical Studies**

| Agent                                                       | Trial [NCT]                   | Phase, N    | Setting (Stage)        | Endpoints                                                       | Est. Completion |
|-------------------------------------------------------------|-------------------------------|-------------|------------------------|-----------------------------------------------------------------|-----------------|
| Atezo, cobimetinib,<br>vemurafenib <sup>3</sup>             | NeoACTIVE<br>[NCT03554083]    | 2<br>N=30   | Neoadj (Stage III)     | <ul><li>pCR (BRAFm and BRAFwt pts)</li><li>median RFS</li></ul> | 06/2023         |
| Dabrafenib, trametinib<br>and/or pembrolizumab <sup>4</sup> | NeoTrio<br>[NCT02858921]      | 2<br>N=60   | Neoadj (Stage IIIB/C)  | pRR                                                             | 11/2020         |
| Domatinostat, NIVO, IPI <sup>5</sup>                        | DONIMI<br>[NCT04133948]       | 1b<br>N=45  | Neoadj/Adj (Stage III) | 2º: pPR, pCR                                                    | 06/2021         |
| Pembrolizumab +/- coxsackievirus<br>A21 (V937) <sup>8</sup> | Substudy 02C<br>[NCT04303169] | 1/2<br>N=65 | Neoadj/Adj (Stage III) | Percentage of AEs, pCR                                          | 04/2030         |


Adj, adjuvant; AEs, adverse events; AT, adjuvant therapy; atezo, atezolizumab; BRAF mutation; BRAF mutation; BRAF wild-type; DFS, disease-free survival; IPI, ipilimumab; N, sample size; NAT, neoadjuvant; NIVO, nivolumab; ORR, objective response rate; OS, overall survival; pCR, pathologic(al) complete response; Pembro, pembrolizumab; pRAF mutation; BRAF mutaticities;

## International Neoadjuvant Melanoma Consortium has guided best practices for neoadjuvant trials



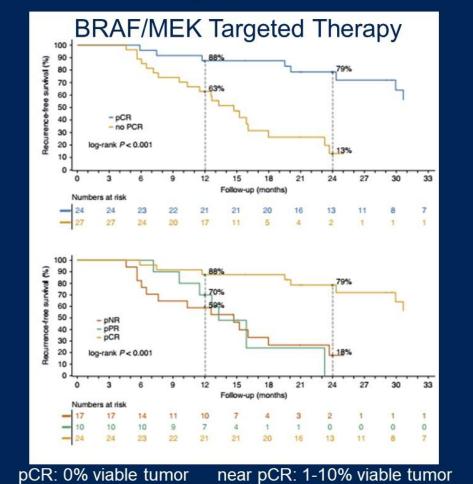

Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma

M. T. Tetzlaff<sup>1,2\*</sup>, J. L. Messina<sup>3</sup>, J. E. Stein<sup>4</sup>, X. Xu<sup>5</sup>, R. N. Amaria<sup>6</sup>, C. U. Blank<sup>7</sup>, B. A. van de Wiel<sup>7</sup>, P. M. Ferguson<sup>8</sup>, R. V. Rawson<sup>8</sup>, M. I. Ross<sup>9</sup>, A. J. Spillane<sup>10</sup>, J. E. Gershenwald<sup>9,11</sup>, R. P. M. Saw<sup>8</sup>, A. C. J. van Akkooi<sup>7</sup>, W. J. van Houdt<sup>7</sup>, T. C. Mitchell<sup>12</sup>, A. M. Menzies<sup>10</sup>, G. V. Long<sup>13</sup>, J. A. Wargo<sup>9,14</sup>, M. A. Davies<sup>2,6,15</sup>, V. G. Prieto<sup>1,16</sup>, J. M. Taube<sup>4†</sup> & R. A. Scolyer<sup>8†</sup>



Ann Oncol. 2018;29(8):1861-8.

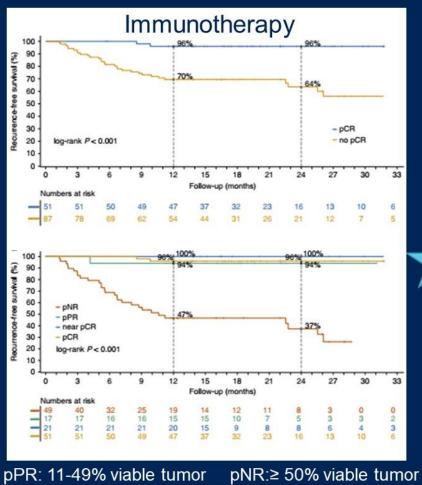



#### Neoadjuvant systemic therapy in melanoma: recommendations of the International Neoadjuvant Melanoma Consortium

Rodabe N Amaria\*, Alexander M Menzies\*, Elizabeth M Burton\*, Richard A Scolyer\*, Michael T Tetzlaff\*, Robert Antdbacka, Charlotte Ariyan, Roland Bassett, Brett Carter, Adil Daud, Mark Faries, Leslie A Fecher, Keith T Flaherty, Jeffrey E Gershenwald, Omid Hamid, Angela Hong, John M Kirkwood, Serigne Lo, Kim Margolin, Jane Messina, Michael A Postow, Helen Rizos, Merrick I Ross, Elisa A Rozeman, Robyn P M Saw, Vernon Sondak, Ryan J Sullivan, Janis M Taube, John F Thompson, Bart A van de Wiel, Alexander M Eggermont, Michael A Davies, The International Neoadjuvant Melanoma Consortium members†, Paolo A Ascierto‡, Andrew J Spillane‡, Alexander C J van Akkooi‡, Jennifer A Wargo‡, Christian U Blank‡, Hussein A Tawbi‡, Georgina V Long‡

Lancet Oncol 20019; 20: e378-89




## Any pathologic response from neoadjuvant immunotherapy results in better RFS

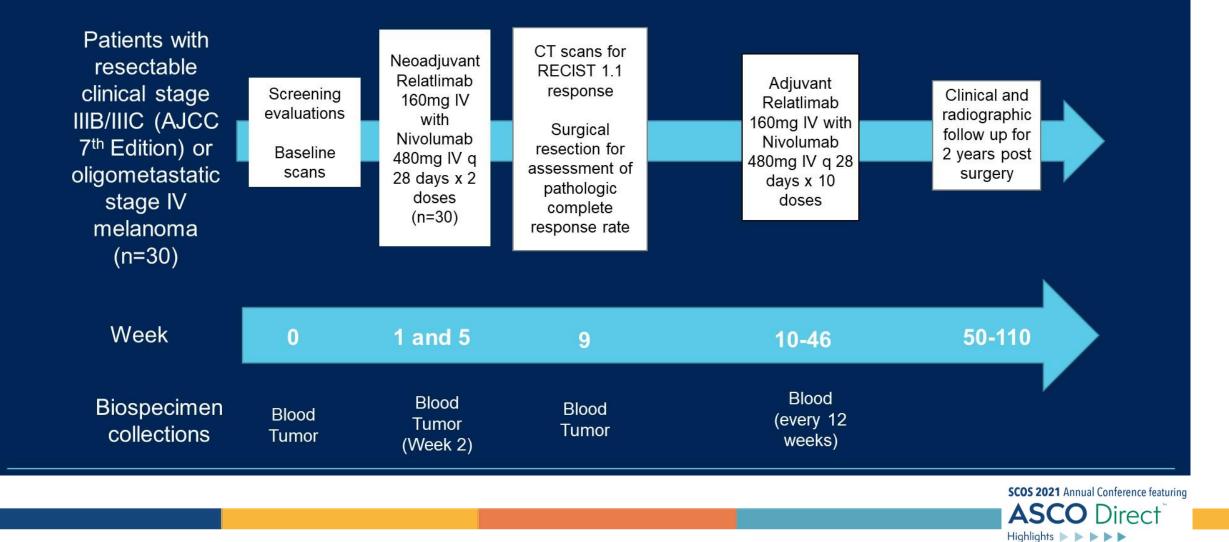


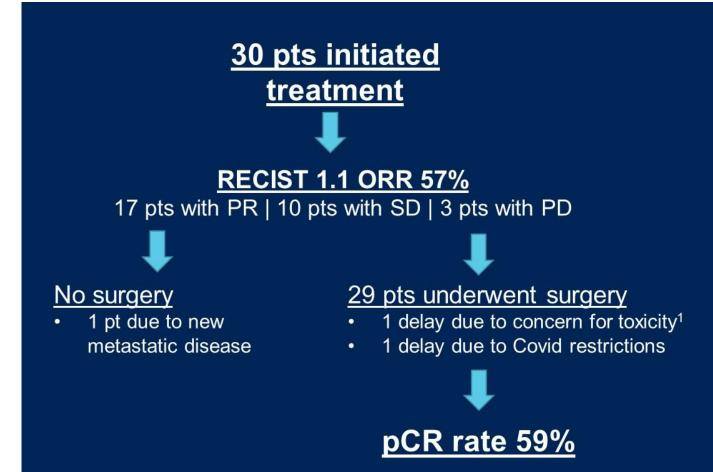
Menzies et al.

Nat Med 2021;

27: 301-09




NATIONAL NEOADJU


INMC

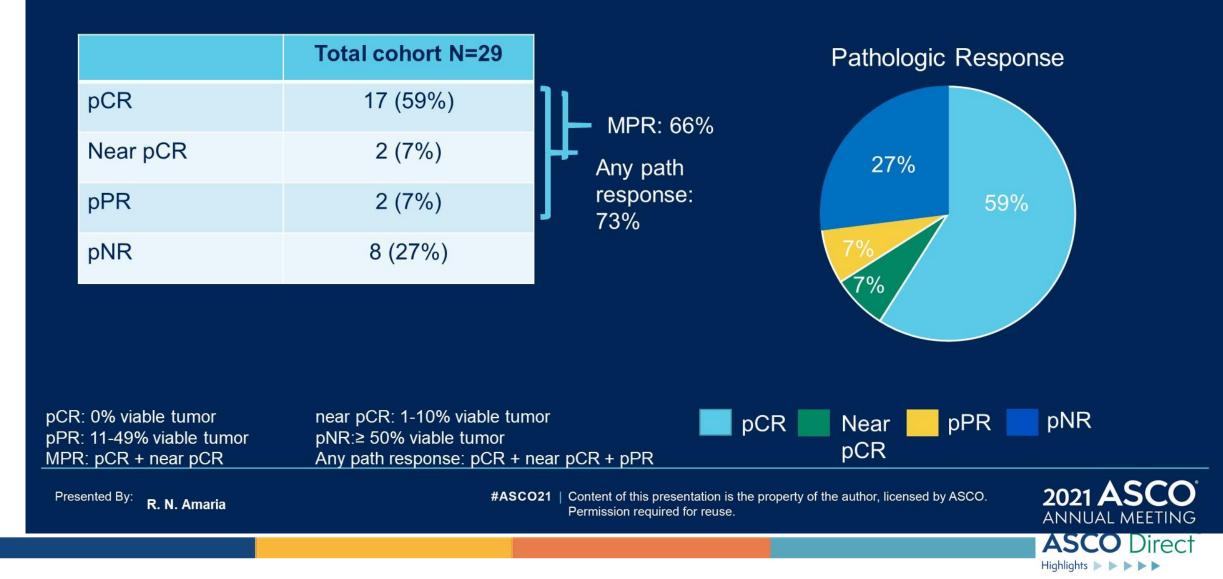
NOMA CONSOR

**SCOS 2021** Annual Conference featuring **ASCO** Direct<sup>®</sup> Highlights

## **Study Design and Treatment Plan**

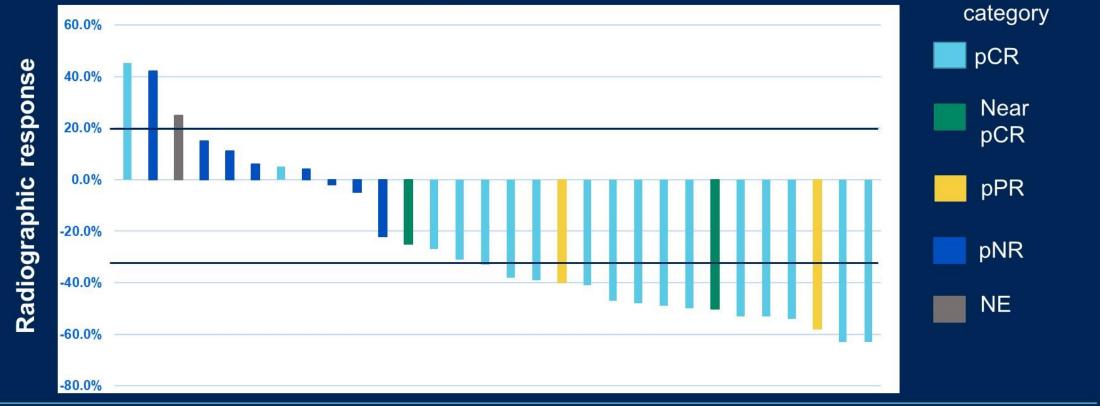





#### Participant Disposition

- > 11 completed treatment
- 6 treatment ongoing
- 8 stopped due to toxicity in adjuvant setting
- 2 stopped treatment due to preference
- 3 disease progression with median 16.2 mo f/up
  - 1 local recurrence
  - 2 distant disease

1: concern for myocarditis which was ruled out on endomyocardial biopsy and patient went to surgery 6 weeks later




## 59% Pathologic Complete Response Rate



## Radiographic Response can Underestimate Pathologic Response

- Of 19 patients with pCR/near pCR, 1 had radiographic PD, 3 SD, 15 PR
- Of 8 patients with pNR, only 1 had radiographic PD, 7 had SD
- No patients achieved a RECIST 1.1 CR





Pathologic

response

## Conclusions

- Neoadjuvant nivolumab + relatlimab achieved high rates of pCR (59%) and MPR (66%)
- Patients with MRP have improved RFS compared to those without MPR with no relapses observed to date with median 16.2 mo follow up
- Nivolumab + relatlimab is well tolerated with no high-grade toxicities in the neoadjuvant setting
- Translational studies demonstrate increased effector CD8 T cell population and decreased immunosuppressive M2 macrophages in tumors of MPR patients
- Compared to other neoadjuvant regimens, nivolumab + relatlimab produces similar efficacy but reduced toxicity
- Neoadjuvant trials continue to provide invaluable insights into novel therapies/combinations and represents an important tool in drug development

SCOS 2021 Annual Conference featuring ASCO Direct Highlights

## Learnings from ASCO 2021

- Front line therapy
  - Anti-LAG3 plus nivolumab maybe a new front-line option
  - Low dose (1 mg/kg) of ipi+nivo as effective as higher dose (3mg/kg) ipi?
- Data after immunotherapy failure
  - Lenvatinib plus pembro promising but toxic
  - Lifileucel promising but practical considerations
- Neoadjuvant Therapy
  - Neoadjuvant therapy remains promising; randomized trials are underway
  - No change in clinical practice for adjuvant therapy
    - Relapsed patients have similar outcomes as front-line metastatic patients Conference featuring

