Lung Cancer

SCOS 2021 Annual Conference Featuring ASCO Direct[™] Highlights

The South Carolina Oncology Society and the Association of Community Cancer Centers

> Alberto Chiappori, MD Senior Member Thoracic Oncology Program Moffitt Cancer Center

> > August 7, 2021 Charleston, SC

> > > SCOS 2021 Annual Conference featuring

Disclosure of Conflicts of Interest

Alberto Chiappori, MD reported the following relevant financial relationships or relationships they have with ineligible companies of any amount during the past 24 months:

- *Consultant:* AstraZeneca, Bristol Myers Squibb, and Jazz Pharmaceuticals.
- Speaker's Bureau: Amgen, Blueprint, Genentech, Merck & Co., Takeda.

Presentation Overview

- NSCLC Early Stage Disease
 - 8504: Video-Assisted Thoracoscopic versus Open Lobectomy in Patients with Early Stage Lung Cancer. One year Results from a Randomized controlled Study (VIOLET)
 - 8500: Impower 010: Primary Results of a Phase 3 Global Study of Atezolizumab vs Best Supportive Care After Adjuvant Chemotherapy in Resected Stage IB-IIIA Non-Small Cell Lung Cancer (NSCLC)
- NSCLC Advanced Disease
 - 9000: First-line nivolumab + ipilimumab + 2 cycles of chemotherapy versus chemotherapy alone (4 cycles) in patients with advanced non-small cell lung cancer: 2 year update from CheckMate 9LA
 - 9006: Amivantamab in combination with Lazertinib for the Treatment of Osimertinib-relapsed, Chemotherapy-naïve EGFR Mutant (EGFRm) Non-small Cell Lung Cancer (NSCLC) and Potential Biomarkers for Response
- NSCLC- Biomarkers (Racial Disparities)
 - 9005: Racial Disparities in Biomarker Testing and Clinical Enrollment in Non-Small Cell Lung Cancer (NSCLC)
- NSCLC Safety (irAE)
 - 9002: Pooled Analyses of Immune-Related Adverse Events and Efficacy from the Phase 3 Trials Impower130, IMpower132 and IMpower150
- SCLC Thoracic Radiotherapy
 - 8505: Phase III Comparison of High Dose Once Daily (QD) Thoracic Radiotherapy (TRT) with Standard Twice-Daily (BID) TRT in Limited Stage Small Cell Lung Cancer (LSCLC): CALGB 30610 (Alliance)/RTOG 0538
- Mesothelioma Relapsed Disease
 - 8507: A Randomized Phase II trial of Oral Vinorelbine as Second-Line Therapy for Patients with Malignant Pleural Mesothelioma

VIDEO-ASSISTED THORACOSCOPIC VERSUS OPEN LOBECTOMY IN PATIENTS WITH EARLY-STAGE LUNG CANCER: ONE-YEAR RESULTS FROM A RANDOMIZED CONTROLLED TRIAL (VIOLET)

Eric Lim, Tim JP Batchelor, Joel Dunning, Michael Shackcloth, Vladimir Anikin, Babu Naidu, Elizabeth Belcher, Mahmoud Loubani, Vipin Zamvar, Rosie A Harris, Lucy Dabner, Holly E McKeon, Sangeetha Paramasivan, Alba Realpe, Daisy Elliott, Paulo De Sousa, Jane Blazeby, Chris A Rogers on behalf of The VIOLET Trialists

Royal Brompton & Harefield

Imperial College London

Background and Methods

- VIOLET is a UK National Institute of Health Research (NIHR 03/04/03) funded RCT conducted by the UK Thoracic Surgery Research Collaborative, to compare clinical and cost effectiveness of VATS versus open (thoracotomy) and lobectomy for lung cancer
- VIOLET is a UK multicentre RCT where participants with known or suspected primary lung cancer within cT1-3, cN0-1, M0 stage (TNM 8) were randomized (1:1 ratio) to VATS or open lobectomy
- Primary outcome (single measure to encompass "recovery") was physical function at 5 weeks. Measured by a) EORTC QLQ C-30 physical function score and b) one category change in performance status
- Secondary outcomes included measures of clinical efficacy (pain, duration of hospital stay), procedural safety (complications, re-admissions), oncologic quality (lymph node upstaging, time to adjuvant chemotherapy, disease recurrence, survival) and cost-effectiveness up to one-year
- In hospital outcomes presented at 2019 World Conference of Lung Cancer: BMJ Open 2019;9:e029507. doi: 10.1136 / bmjopen-2019-029507
- At ASCO today we present our trial's primary endpoint and results to one-year

Clinical efficacy (physical function to one year)

Outcome	Primary analysis		Analysis excluding benign patients		
	MD (95% CI)	p value ¹	MD (95% CI)	p value ¹	
QLQ-C30 physical	4 65 (1 60 7 61)	0.0080	4 66 (1 71 7 62)	0.0080	
function at 5 weeks	4.03 (1.09, 7.01)	0.0089	4.00 (1.71, 7.02)	0.0089	

Multiple imputation (50 imputed datasets) was used to account for missing data. Models could not be adjusted for operating surgeon or centre. ¹P values have been adjusted for multiple testing using the Benjamini-Hochberg method MD=mean difference, CI=confidence interval

Higher scores indicate better physical function. MD=mean difference (95% confidence interval)

Procedural safety (complications & readmissions)

Outcome	Randomised to VATS (n=247)	Randomised to open surgery (n=255)	RR (95% CI)	p value
In-hospital before discharge				
Any in-hospital AE	81/247 (32.8%)	113/255 (44.3%)	RR=0.74 (0.66, 0.84)	< 0.001
Any in-hospital SAE	20/247 (8.1%)	21/255 (8.2%)	RR=0.98 (0.59, 1.63)	0.948
After discharge following				
surgery (events/patients)				
Readmissions	117/70 (29.0%)	141/88 (35.9%)		
SAE	142/75 (30.7%)	207/94 (37.8%)	RR=0.81 (0.66, 1.00)	0.053

Data are n/N (%) unless otherwise specified.

AE=adverse event. SAE=Serous adverse event

Oncologic quality (in-hospital)

Outcome	Randomised to	Randomised to open	0	Randomised to	Randomised to open
Outcome	VATS (n=247)	surgery (n=255)	Outcome	VATS (n=247)	surgery (n=255)
Total number of lymph node stations harvested	5 (4.0, 6.0)	5 (4.0, 6.0)	cN0 to pN1		
Mediastinal nodes harvested (stations 2 to 9)	3 (3.0, 4.0)	3 (3.0, 4.0)	Yes	15/244 (6.2%)	13/252 (5.2%)
Complete (R0) resection	210/215 (97.7%)	219/224 (97.8%)	No	211/244 (86.5%)	219/252 (86.9%)
Site of residual (R1) disease			Not concer	19/244 (7.49/)	20/252 (7.0%)
Bronchial margin	2/5 (40.0%)	3/5 (60.0%)	Not cancer	18/244 (7.4%)	20/252 (7.9%)
Vascular margin	0/5 (0.0%)	1/5 (20.0%)	cN0/1 to pN2		
Lung parenchymal margin	2/5 (40.0%)	0/5 (0.0%)	Yes	15/244 (6.2%)	12/252 (4.8%)
Other	1/5 (20.0%)	0/5 (0.0%)	No	211/244 (86.5%)	220/252 (87.3%)
No data	0/5 (0.0%)	1/5 (20.0%)	Not cancer	18/244 (7.4%)	20/252 (7.9%)

Data are median (IQR) or n/N (%). R0 resection=no residual tumour. R1 resection=microscopic residual tumour. Data are presented as n/N (%).

Oncologic quality (adjuvant treatment)

Open: n=28, Median= 1.89, IQR=(1.68, 2.43) VATS: n=28, Median= 2.07, IQR=(1.63, 2.89)

Oncologic quality (recurrence & new cancers)

T	Randomised to	Randomised to open			
1 ype/location	VATS (n=18)	surgery (n=21)			
Loco-regional recurrence					
Lung	3/3 (16.7%)	7/6 (28.6%)			
Mediastinal	4/4 (22.2%)	1/1 (4.8%)	New cancer		
Bronchus	0	1/1 (4.8%)	Prostate	1/1 (5.6%)	2/2 (9.
Pleura and lymph nodes	1/1 (5.6%)	0	Lung	1/1 (5.6%)	1/1 (4.
Not collected ¹	3/2 (11.1%)	4/4 (19%)	Acute myeloid leukaemia	0	1/1 (4.
Distant recurrence			Bowel	1/1 (5.6%)	0
Adrenal gland	0	3/2 (9.5%)	Cholangiocarcinoma	1/1 (5.6%)	0
Adrenal gland and liver	0	1/1 (4.8%)	Sarcoma	0	1/1 (4.
Brain	1/1 (5.6%)	2/2 (9.5%)	Not collected ¹	0	1/1 (4.
Brain/spine	1/1 (5.6%)	0	Data are recurrences/patients (%).		
Liver	2/2 (11.1%)	0	a Data collection added part-way through t	he study so only available for a s	subset of patients
Liver, adrenal glands, intra-		<u>^</u>			
abdominal lymph nodes	1/1 (5.6%)	0			
Thoracic and lumbar spine	1/1 (5.6%)	0			
Not collected ¹	1/1 (5.6%)	4/4 (19%)			

2/2 (9.5%)

1/1 (4.8%)

1/1 (4.8%)

1/1 (4.8%)

1/1 (4.8%)

Oncologic quality (survival)

Analyses are adjusted for operating surgeon and centre.

R=Hazard Ratio. CI=confidence interval

Conclusion

- VATS lobectomy was associated with less pain, significantly lower (total) complications, shorter length of stay achieved without any compromise to procedural oncologic outcomes (lymph node dissection, upstaging of mediastinal nodes, complete resection) or serious adverse events
- Superior recovery continued after discharge with improved physical function and vast majority of secondary measures of quality of life (up to one year)
- Fewer complications and re-admissions continued to be observed after discharge (up to one year)
- Without any difference in recurrence, disease-free and overall survival (up to one-year)
- A technique that is both more effective and less costly compared to thoracotomy

FUNDED BY

This study is funded by the National Institute for Health Research (NIHR)-HTA (13/04/03). The views expressed are those of the authors and not necessarily those of the NIHR or Department of Health and Social Care

IMpower010: Primary Results of a Phase 3 Global Study of Atezolizumab vs Best Supportive Care After Adjuvant Chemotherapy in Resected Stage IB-IIIA Non-Small Cell Lung Cancer (NSCLC)

Heather A. Wakelee,¹ Nasser Altorki,² Caicun Zhou,³ Tibor Csőszi,⁴ Ihor O. Vynnychenko,⁵ Oleksandr Goloborodko,⁶ Alexander Luft,⁷ Andrey Akopov,⁸ Alex Martinez-Marti,⁹ Hirotsugu Kenmotsu,¹⁰ Yuh-Min Chen,¹¹ Antonio Chella,¹² Shunichi Sugawara,¹³ Fan Wu,¹⁴ Jing Yi,¹⁵ Yu Deng,¹⁵ Mark McCleland,¹⁵ Elizabeth Bennett,¹⁵ Barbara J. Gitlitz,¹⁵ Enriqueta Felip¹⁶

2021 ASCO

ANNUAL MEETING

¹Stanford University School of Medicine/Stanford Cancer Institute, Stanford, CA, USA; ²New York-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA; ³Tongji University Affiliated Shanghai Pulmonary Hospital, Shanghai, China; ⁴Jasz-Nagykun-Szolnok Megyei Hetenyi Geza Korhaz-Rendelointezet, Szolnok, Hungary; ⁵Sumy State University, Regional Municipal Institution Sumy Regional Clinical Oncology Dispensary, Sumy, Ukraine; ⁶MI Zaporizhzhia Regional Clinical Oncological Dispensary Zaporizhzhia SMU Ch of Oncology, Zaporizhzhya, Ukraine; ⁷Leningrad Regional Clinical Hospital, St. Petersburg, Russia; ⁸Pavlov State Med Univ, St. Petersburg, Russia; ⁹Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Barcelona, Spain; ¹⁰Shizuoka Cancer Center, Shizuoka, Japan; ¹¹Taipei Veterans General Hospital and National Yang Ming Chiao Tung University. Taipei. Taiwan: ¹²Azienda Ospedaliero Universitaria Pisana. Pisa. Italv: ¹³Sendai Kousei Hospital. Mivagi. Japan: ¹⁴Roche

SCOS 2021 Annual Conference featuring

IMpower010: introduction

- Adjuvant platinum-based chemotherapy changed the standard of care for completely resected early-stage NSCLC (stage IB-IIIA) over 15 years ago¹⁻⁴
 - DFS HR, 0.84 (95% CI: 0.78, 0.91)
 - OS HR, 0.89 (95% CI: 0.82, 0.96)
 - Leads to 4%-5% OS improvement at 5 years vs observation
- Osimertinib provides substantial DFS benefit in patients whose tumors harbor EGFR activating mutations,⁵ but there remains a high unmet need for improved adjuvant treatment in other patients with NSCLC
- IMpower010 evaluated the efficacy and safety of adjuvant atezolizumab vs best supportive care (BSC) after adjuvant chemotherapy in patients with completely resected NSCLC

Pignon J-P, et al. J Clin Oncol 2008;26:3552-9; 2. NCCN Clinical Practice Guidelines in Oncology. Non-Small Cell Lung Cancer. V8.2020; 3. Postmus PE, et al. Ann Oncol 2017;28(suppl 4):iv1-21.
 Vansteenkiste J, et al. Ann Oncol 2019;30(8):1244-53; 5. Wu Y-L, et al. N Engl J Med 2020;383:1711-23.

Dr. Heather A. Wakelee IMpower010 Interim Analysis https://bit.ly/33t6JJP

14

SCOS 2021 Annual Conference featuring

IMpower010: study design

Stratification factors

- Male/female
- Stage (IB vs II vs IIIA)
- Histology
- PD-L1 tumor expression status^a: TC2/3 and any IC vs TC0/1 and IC2/3 vs TC0/1 and IC0/1

Primary endpoints

- Investigator-assessed DFS tested hierarchically:
 - PD-L1 TC ≥1% (per SP263) stage II-IIIA population
 - All-randomized stage II-IIIA population
 - ITT population (stage IB-IIIA)

Key secondary endpoints

- OS in ITT population
- DFS in PD-L1 TC ≥50% (per SP263) stage
 II-IIIA population
- 3-y and 5-y DFS in all 3 populations

Both arms included observation and regular scans for disease recurrence on the same schedule. ECOG, Eastern Cooperative Oncology Group; IC, tumor-infiltrating immune cells; ITT, intent to treat; TC, tumor cells. ^a Per SP142 assay. Dr. Heather A. Wakelee IMpower010 Interim Analysis https://bit.ly/33t6JJP

15

IMpower010: DFS in the PD-L1 TC ≥1%^a stage II-IIIA population (primary endpoint)

Clinical cutoff: January 21, 2021. CI, confidence interval; HR, hazard ratio; NE, not evaluable. ^a Per SP263 assay. ^b Stratified log-rank. ^c Crossed the significance boundary for DFS.

SCOS 2021 Annual Conference featuring

Highlights

irect

IMpower010: DFS in the all-randomized stage II-IIIA population (primary endpoint)

Clinical cutoff: January 21, 2021. ^a Stratified log-rank. ^b Crossed the significance boundary for DFS.

17

SCOS 2021 Annual Conference featuring

Highlights

rect

IMpower010: DFS in key subgroups of the all-randomized stage II-IIIA population

IMp

<u>Subgroup</u>	<u>N</u>		<u>HR (95% CI)ª</u>
All patients	882		0.79 (0.64, 0.96)
Age			
<65 y	544	F - F	0.79 (0.61, 1.03)
≥65 y	338	⊢	0.76 (0.54, 1.05)
Sex			
Male	589	F	0.76 (0.59, 0.99)
Female	293	E H	0.80 (0.57, 1.13)
Race			
White	631	F	0.78 (0.61, 1.00)
Asian	227	F F	0.82 (0.55, 1.22)
ECOG PS			
0	491	⊨	0.72 (0.55, 0.95)
1	388	₽ 	0.87 (0.64, 1.18)
Tobacco use history			
Never	196	↓ ↓	1.13 (0.77, 1.67)
Previous	547	⊢ →	0.62 (0.47, 0.81)
Current	139	F F	1.01 (0.58, 1.75)
Histology			
Squamous	294	F + I	0.80 (0.54, 1.18)
Non-squamous	588		0.78 (0.61, 0.99)
	0 4	10	10 0
	U.1		

Atezolizumab betterBSC betterClinical cutoff: January 21, 2021. a Stratified for all patients; unstratified for all other subgroups.

Subgroup	<u>N</u>		<u>HR (95% CI)ª</u>
All patients	882	¦ ⊫⊶	0.79 (0.64, 0.96)
Stage			
IIA	295		0.68 (0.46, 1.00)
IIB	174	F F	0.88 (0.54, 1.42)
IIIA	413	F	0.81 (0.61, 1.06)
Regional lymph node stage (pN)			
NO	229		0.88 (0.57, 1.35)
N1	348	k −−−− i	0.67 (0.47, 0.95)
N2	305		0.83 (0.61, 1.13)
SP263 PD-L1 status			
TC≥50%	229		0.43 (0.27, 0.68)
TC≥1%	476		0.66 (0.49, 0.87)
TC<1%	383		0.97 (0.72, 1.31)
EGFR mutation status			
Yes	109	F	0.99 (0.60, 1.62)
No	463	F	0.79 (0.59, 1.05)
Unknown	310		0.70 (0.49, 1.01)
ALK rearrangement status		F	
Yes	31	₽ ₽ - - - -	1.04 (0.38, 2.90)
No	507	F I	0.85 (0.66, 1.10)
Unknown	344		0.66 (0.46, 0.93)
	0.1	1.0	10.0
)r. Heather A. Wakelee	-	HR	→
ower010 Interim Analysis	Atezoli	zumab better BSC bet	ter
https://bit.ly/33t6JJP			18
		SCOS 202	21 Annual Conference featuring

Direct

Highlights 🕨 🕨

IMpower010: DFS in the ITT population (stage IB-IIIA; primary endpoint)

19

SCOS 2021 Annual Conference featuring

Highlights

irect

IMpower010: early OS data at interim DFS analysis

- OS data were immature at this pre-planned DFS interim analysis
 - OS in the ITT population was not formally tested
 - A trend toward OS improvement with atezolizumab was seen in the PD-L1 TC ≥1% stage II-IIIA population

Dr. Heather A. Wakelee IMpower010 Interim Analysis https://bit.ly/33t6JJP

20

SCOS 2021 Annual Conference featuring

Highlig

Clinical cutoff: January 21, 2021. ^a Stratified.

IMpower010: conclusions

- IMpower010 is the first Phase III study of cancer immunotherapy to demonstrate DFS improvement in the adjuvant NSCLC setting after platinum-based chemotherapy
 - Adjuvant atezolizumab following complete resection and adjuvant chemotherapy showed statistically significant DFS benefit in the PD-L1 TC ≥1% stage II-IIIA (HR, 0.66; 95% CI: 0.50, 0.88) and allrandomized stage II-IIIA (HR, 0.79; 95% CI: 0.64, 0.96) populations, with enriched clinical benefit in patients whose tumors express PD-L1
- IMpower010 will continue for DFS and OS analyses in the ITT population
 - DFS in the ITT population, including patients with stage IB disease, did not cross the significance boundary at this interim DFS analysis
 - At this pre-planned interim DFS analysis, OS data were immature and not formally tested
- The safety profile of atezolizumab was consistent with prior experience of atezolizumab monotherapy across indications and lines of therapy
- Atezolizumab may be considered a practice-changing adjuvant treatment option for patients with PD-L1 TC ≥1% stage II-IIIA NSCLC

IMpower010: conclusions

- IMpower010 is the first Phase III study of cancer immunotherapy to demonstrate DFS improvement in the adjuvant NSCLC setting after platinum-based chemotherapy
 - Adjuvant atezolizumab following complete resection and adjuvant chemotherapy showed statistically significant DFS benefit in the PD-L1 TC ≥1% stage II-IIIA (HR, 0.66; 95% CI: 0.50, 0.88) and allrandomized stage II-IIIA (HR, 0.79; 95% CI: 0.64, 0.96) populations, with enriched clinical benefit in patients whose tumors express PD-L1
- IMpower010 will continue for DFS and OS analyses in the ITT population
 - DFS in the ITT population, including patients with stage IB disease, did not cross the significance boundary at this interim DFS analysis
 - At this pre-planned interim DFS analysis, OS data were immature and not formally tested
- The safety profile of atezolizumab was consistent with prior experience of atezolizumab monotherapy across indications and lines of therapy
- Atezolizumab may be considered a practice-changing adjuvant treatment option for patients with PD-L1 TC ≥1% stage II-IIIA NSCLC

Dr. Heather A. Wakelee IMpower010 Interim Analysis https://bit.ly/33t6JJP

First-line nivolumab + ipilimumab + 2 cycles of chemotherapy versus chemotherapy alone (4 cycles) in patients with advanced non-small cell lung cancer: 2-year update from CheckMate 9LA

<u>Martin Reck</u>,¹ Tudor-Eliade Ciuleanu,² Manuel Cobo,³ Michael Schenker,⁴ Bogdan Zurawski,⁵ Juliana Menezes,⁶ Eduardo Richardet,⁷ Jaafar Bennouna,⁸ Enriqueta Felip,⁹ Oscar Juan-Vidal,¹⁰ Aurelia Alexandru,¹¹ Hiroshi Sakai,¹² Arnaud Scherpereel,¹³ Shun Lu,¹⁴ Luis G. Paz-Ares,¹⁵ David P. Carbone,¹⁶ Arteid Memaj,¹⁷ Sathiya Marimuthu,¹⁷ Phuong Tran,¹⁷ Thomas John¹⁸

¹Airway Research Center North, German Center for Lung Research, LungClinic, Grosshansdorf, Germany; ²Institutul Oncologic Prof Dr Ion Chiricuta and UMF Iuliu Hatieganu, Cluj-Napoca, Romania; ³Unidad de Gestión Clínica Intercentros de Oncología Médica, Hospitales Universitarios Regional y Virgen de la Victoria, IBIMA, Málaga, Spain; ⁴SF Nectarie Oncology Center, Craiova, Romania; ⁵Ambulatorium Chemioterapii, Bydgoszcz, Poland; ⁶Hospital Nossa Senhora da Conceição, Porto Alegre, Brazil; ⁷Instituto Oncológico de Córdoba, Córdoba, Argentina; ⁸University Hospital of Nantes and INSERM, CRCINA, Nantes, France; ⁹Vall d'Hebron University Hospital, Vall d'Hebron Institute of Oncology, Barcelona, Spain; ¹⁰Hospital Universitario La Fe, Valencia, Spain; ¹¹Institute of Oncology Prof Dr Alexandru Trestioreanu Bucha, Bucharest, Romania; ¹²Saitama Cancer Center, Saitama, Japan; ¹³University of Lille, CHU Lille, INSERM U1189, OncoThAI, Lille, France; ¹⁴Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai JiaoTong University, Shanghai, China; ¹⁵Hospital Universitario 12 de Octubre, CNIO-H120 Lung Cancer Clinical Research Unit, Universidad Complutense & CiberOnc, Madrid, Spain; ¹⁶The Ohio State University Comprehensive Cancer Center, Columbus, OH, USA; ¹⁷Bristol Myers Squibb, Princeton, NJ, USA; ¹⁸Austin Hospital, Heidelberg, Australia

Introduction

- The combination of nivolumab (NIVO) and ipilimumab (IPI), which have distinct but complementary mechanisms of action,¹⁻³ has shown improved long-term OS benefit in advanced NSCLC, melanoma, RCC, and mesothelioma⁴⁻⁷
- In the randomized phase 3 CheckMate 9LA study (NCT03215706), 1L NIVO + IPI plus 2 cycles of chemotherapy (chemo) significantly improved OS, PFS, and ORR vs standard chemo (4 cycles), with no new safety signals⁸
 - This regimen is now approved in the US, EU, and several other countries as 1L treatment for adult patients with metastatic NSCLC and no EGFR or ALK genomic tumor aberrations^{9,10}
- Here, we present updated efficacy and safety results from CheckMate 9LA with a minimum follow-up of 2 years, and a post hoc efficacy analysis in patients who discontinued NIVO + IPI + chemo due to treatment-related adverse events

^{1.} Sharma P, et al. *Nat Rev Immunol* 2020;20:75-76; 2. Wei SC, et al. *Cancer Discov* 2018;8:1069-1086; 3. Das R, et al. *J Immunol* 2015;194:950-959; 4. Ramalingam SS, et al. Oral presentation at the ASCO Annual Meeting; May 29-31, 2020; virtual. Abstract 9500; 5. Larkin J, et al. *N Engl J Med* 2019;381:1535-1546; 6. Motzer RJ, et al. *Lancet Oncol* 2019;20:1370-1385; 7. Baas P, et al. *Lancet* 2021;397:375-386; 8. Paz-Ares L, et al. *Lancet Oncol* 2021;22:198-211; 9. OPDIVO^{*} (nivolumab) [package insert]. Princeton, NJ: Bristol Myers Squibb; April 2021; 10. eCancer. https://ecancer.org/en/news/19041-eu-approves-first-line-treatment-option-for-advanced-non-small-cell-lung-cancer. Published November 2, 2020. Accessed February 9, 2021.

CheckMate 9LA study design^a

- Stage IV or recurrent NSCLC
- No prior systemic therapy
- No sensitizing *EGFR* mutations or known *ALK* alterations
- ECOG PS 0-1

Stratified by PD-L1^b (< 1%^c vs ≥ 1%), sex, and histology (SQ vs NSQ)

Primary endpoint	Secondary endpoints	Exploratory endpoints
• OS	 PFS by BICR^e 	Safety
	ORR by BICR ^e	
	 Efficacy by tumor PD-L1 expression 	

DBL: February 18, 2021; minimum / median follow-up for OS: 24.4 months / 30.7 months.

^aNCT03215706; ^bDetermined by the PD-L1 IHC 28-8 pharmDx assay (Dako); ^cPatients unevaluable for PD-L1 were stratified to PD-L1 < 1% and capped to 10% of all randomized patients; ^dNSQ: pemetrexed + cisplatin or carboplatin; SQ: paclitaxel + 25 carboplatin; ^eHierarchically statistically tested.

Minimum follow-up: 24.4 months. ^a95% CI = 13.9–19.7 (NIVO + IPI + chemo) and 9.5–12.7 (chemo).

2-Year update: OS subgroup analysis

	Median OS, mo			
	NIVO + IPI + chemo	Chemo		
Subgroup	n = 361	n = 358	Unstratified HR	Unstratified HR (95% CI)
All randomized (N = 719)	15.8	11.0	0.73	<u> </u>
< 65 years (n = 354)	15.9	10.7	0.64	_ _
≥ 65 to < 75 years (n = 295)	19.0	11.9	0.78	
≥ 75 years (n = 70)	8.5	11.5	1.04	
Male (n = 504)	14.2	9.8	0.72	_
Female (n = 215)	22.2	15.9	0.75	
ECOG PS 0 (n = 225)	27.1	14.1	0.54	I
ECOG PS 1 (n = 492)	13.6	9.7	0.83	
Never smoker (n = 98)	14.1	14.4	1.08	
Smoker (n = 621)	16.2	10.4	0.68	
SQ (n = 227)	14.5	9.1	0.63	
NSQ (n = 492)	17.8	12.0	0.78	
Liver metastases (n = 154)	10.2	8.1	0.85	
No liver metastases (n = 565)	19.3	12.4	0.72	—
Bone metastases (n = 207)	11.9	8.3	0.73	i
No bone metastases (n = 512)	19.7	12.4	0.74	—• —
CNS metastases (n = 123)	19.9	7.9	0.47	
No CNS metastases (n = 596)	15.6	11.8	0.79	_ _
PD-L1 < 1% (n = 264)	17.7	9.8	0.67	I
PD-L1 ≥ 1% (n = 407)	15.8	10.9	0.70	
PD-L1 1–49% (n = 233)	15.2	10.4	0.70	
PD-L1 ≥ 50% (n = 174)	18.9	12.9	0.67	
			0.	25 0.5 1 2 4

→ Chemo

2-Year update: PFS and DOR

DOR^a

Minimum follow-up: 23.3 months.

^aPer BICR; ^b95% CI = 5.6–7.8 (NIVO + IPI + chemo) and 4.4–5.6 (chemo); ^cIncludes 3.3% CR and 34.6% PR; 4 patients who had a PR as best response at a previous DBL (12.2 months minimum follow-up for response) improved to CRs; ^dIncludes 1.1% CR and 24.3% PR; ^e95% CI = 8.7–20.2 (NIVO + IPI + chemo) and 4.4–7.2 (chemo).

PD-L1 < 1%: efficacy outcomes

- Exploratory analysis of OS by histology in PD-L1 < 1% (HR; NIVO + IPI + chemo vs chemo): 0.75^e (NSQ) and 0.48^f (SQ)
 - 2-year OS rates were 38% vs 26% (NSQ) and 33% vs 11% (SQ)

^aPer BICR; ^b95% CI = 13.7–20.3 (NIVO + IPI + chemo) and 7.7–13.5 (chemo); ^c95% CI = 4.4–7.6 (NIVO + IPI + chemo) and 4.2–5.7 (chemo); ^d95% CI = 6.7–NR (NIVO + IPI + chemo) and 2.8–7.1 (chemo); ^e95% CI = 0.54-1.04 (NSQ); ^f95% CI = 0.28-0.81 (SQ).

PD-L1 ≥ 1%: efficacy outcomes

- Exploratory analysis of OS by histology in PD-L1 \geq 1% (HR; NIVO + IPI + chemo vs chemo): 0.71^e (NSQ) and 0.70^f (SQ)
 - 2-year OS rates were 42% vs 29% (NSQ) and 38% vs 26% (SQ)

^aPer BICR; ^b95% CI = 13.8–22.2 (NIVO + IPI + chemo) and 9.5–13.2 (chemo); ^c95% CI = 5.6–8.9 (NIVO + IPI + chemo) and 4.2–5.6 (chemo); ^d95% CI = 8.5–20.7 (NIVO + IPI + chemo) and 4.3–9.6 (chemo); ^e95% CI = 0.53-0.95 (NSQ); ^f95% CI = 0.48-1.01 (SQ).

PD-L1 ≥ 50%: efficacy outcomes

Grade 3-4 TRAE onset by treatment cycle^a

X-axis shows 2-year maximum duration (~ cycle 35); there were no grade 3–4 TRAEs after cycle 32.

^aIncludes events reported between first dose and 30 days after last dose of study therapy; for both treatment arms, patients were counted once in each cycle interval if they experienced an onset of a grade 3–4 TRAEs in that cycle interval; ^bPatients were considered at risk in a cycle interval if exposed to any study drug during that interval.

32

Efficacy in patients who discontinued NIVO + IPI + chemo due to TRAEs^a

No. at risk (patients who discontinued due to TRAEs)

 61
 55
 53
 49
 44
 41
 36
 34
 33
 26
 15
 11
 4
 0

Patients who discontinued all components of NIVO + IPI + chemo due to TRAEs

	NIVO + IPI + chemo (n = 61)
Median OS, ^b mo	27.5
2-year OS rate, %	54
ORR, n (%)	31 (51)
Median DOR after discontinuation, ^c mo	14.5
Ongoing response for ≥ 1 year after discontinuation, ^c %	56

Among patients who discontinued all components of NIVO + IPI + chemo due to TRAEs:

- Median (range) number of doses was 7 (1-33) for NIVO and 3 (1-17) for IPI
- Median (range) duration of treatment was 4.4 (0-23.3) months

Summary

- At 2 years, OS with 1L NIVO + IPI + 2 cycles chemo was durable vs chemo (38% vs 26%) in patients with advanced NSCLC
 - PFS and DOR benefits were also maintained with longer follow-up
- Benefit with 1L NIVO + IPI + chemo vs chemo was observed across key subgroups, including by PD-L1 expression level, histology, and patients with CNS metastases
- No new safety signals were observed with longer follow-up; onset of most grade 3-4 TRAEs in the NIVO + IPI + chemo arm was during the 2 cycles of chemo treatment
- In a post hoc analysis, discontinuation of NIVO + IPI + chemo due to TRAEs did not have a negative impact on the long-term benefits seen in all randomized patients
 - 56% of the responders who had a TRAE leading to discontinuation maintained their responses for ≥ 1 year after treatment discontinuation^a
- These updated results continue to support NIVO + IPI + 2 cycles of chemo as an efficacious 1L treatment option for patients with advanced NSCLC

2021 ASCO ANNUAL MEETING

Amivantamab In Combination With Lazertinib For The Treatment Of Osimertinib-relapsed, Chemotherapy-naïve EGFR Mutant (EGFRm) Non-small Cell Lung Cancer (NSCLC) and Potential Biomarkers For Response

Joshua M. Bauml¹, **Byoung Chul Cho**², Keunchil Park³, Ki Hyeong Lee⁴, Eun Kyung Cho⁵, Dong-Wan Kim⁶, Sang-We Kim⁷, Eric B. Haura⁸, Joshua K. Sabari⁹, Rachel E. Sanborn¹⁰, Misako Nagasaka¹¹, Sai-Hong Ignatius Ou¹², Anna Minchom¹³, Jorge E. Gomez¹⁴, Joshua C. Curtin¹⁵, Grace Gao¹⁵, Amy Roshak¹⁵, Meena Thayu¹⁵, Roland E. Knoblauch¹⁵, Alexander Spira¹⁶

¹Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; ²Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea; ³Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; ⁴Chungbuk National University Hospital, Cheongju, Republic of Korea; ⁵Gil Medical Center, Gachon University College of Medicine, Incheon, Republic of Korea; ⁶Seoul National University College of Medicine and Seoul National University Hospital, Seoul, Republic of Korea; ⁷Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea; ⁸H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; ⁹New York University School of Medicine, New York, NY, USA; ¹⁰Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA; ¹¹Karmanos Cancer Institute, Detroit, MI, USA; ¹²University of California Irvine, Orange, CA, USA; ¹³Drug Development Unit, Royal Marsden/Institute of Cancer Research, Sutton, UK; ¹⁴Icahn School of Medicine at Mount Sinai, New York, NY USA; ¹⁵Janssen R&D, Spring House, PA, USA; ¹⁶Virginia Cancer Specialists Research Institute, US Oncology Research, Fairfax, VA, USA

Additional information can be viewed by scanning the QR code or accessing this link: <u>https://www.oncologysciencehub.com/OncologyAM2021/amivantamab/Bauml</u> Copies of this presentation obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO[®] and the author of this presentation.

Amivantamab and Lazertinib

Amivantamab (am-e-van-tuh-mab)

- Fully human bispecific antibody that targets EGFR and MET
- Fc portion has immune cell-directing activity¹
- Demonstrated clinical activity across diverse EGFRm NSCLC²⁻⁴
- Granted Breakthrough Therapy Designation for EGFRm Exon20ins NSCLC post-chemotherapy in US (FDA APPROVED) and China

- Potent 3rd-gen TKI with efficacy in activating EGFR mutations, T790M, and CNS disease⁵⁻⁶
- Low rates of EGFR-related toxicity such as rash and diarrhea⁵
- Low cardiovascular safety risk⁷
- Safety profile that supports combination with other anti-EGFR molecules

¹Vijayaraghavan *Mol Cancer Ther* 19:2044; ²Haura *JCO* 37:9009 (oral); ³Park JCO 38:9512 (poster); ⁴Sabari *JTO* 16:S108 (oral); ⁵Ahn *Lancet Oncol* 20:P1681; ⁶Kim *JCO* 38:9571 (poster); ⁷Haddish-Berhane *JTO* 16:S677 (poster). BTD, Breakthrough Therapy Designation; CNS, central nervous system; EGFRm, epidermal growth factor receptor mutant; gen, generation; MOA, mechanism of action; NSCLC, non-small cell lung cancer; TKI, tyrosine kinase inhibitor
Acquired Resistance to Osimertinib in EGFRm NSCLC

CHRYSALIS Phase 1 Study Design: **Combination Cohort**

Key Objectives

- Establish RP2CD
- Safety and efficacy at RP2CD

Key Eligibility Criteria

- Metastatic/unresectable NSCLC
- Measurable disease (expansion cohort)
- EGFR Exon19del or L858R mutation

(NCT02609776)

Biomarker Analysis^a

- NGS of pretreatment tumor biopsy and ctDNA collected prospectively
- IHC for EGFR/MET expression

This presentation provides updated results with longer follow-up from the ESMO 2020 oral presentation (Cho Ann Oncol 31:S813 Oral #12580). ^a≥1 alteration detected in 42/44 ctDNA and 29/45 tumor NGS analyses.

C, cycle; EGFR, epidermal growth factor receptor; IHC, immunohistochemistry; QW, weekly; Q2W, every 2 weeks; RP2CD, recommended phase 2 combination dose

Durable Responses Observed with Amivantamab + Lazertinib with Manageable Safety

- Safety profile consistent with previous experience with amivantamab + lazertinib¹
- Most common AEs were IRR (78%), rash (acneiform dermatitis, 51% + rash, 27%), and paronychia (49%)
 - Majority were grade 1–2
- Treatment-related: grade ≥3 AE (16%), discontinuations (4%), dose reductions (18%)

19 Apr 2021 clinical cutoff. Four patients did not have postbaseline disease assessments and are not included in the plot. ¹Cho Ann Oncol 31:S813 Oral #12580.

AE, adverse event; CBR, clinical benefit rate (CR, PR, or SD ≥11 weeks); CR, complete response; IRR, infusion-related reaction; mDOR, median duration of response; mDOT, median duration of treatment; mF/U, median follow-up; mPFS, median progression-free survival; NE, not evaluable; NR, not reached; ORR, overall response rate; PD, progressive disease; PR, partial response; SD, stable disease; SoD, sum of target lesion diameters; UNK, unknown

Response Among Patients with Identified EGFR/MET-based Resistance

- 17 of 45 patients were identified with either EGFR/MET-based resistance by NGS^a (ctDNA/tissue)
- ORR in this subgroup was 47%, mDOR was 10.4 months, CBR was 82%, and mPFS was 6.7 months

Resistance ^b	Alterations	C
EGFR-based	C797S (n=7) Amp (n=3) L718X (n=3) G724S (n=2)	L792H (n=1) G796S (n=1) E709K (n=1)
MET-based	Amp (n=5)	METex14 (n=1)
Additional	PIK3CA E542X (n=2) CCNE1 Amp (n=1) PIK3CA Amp (n=1) CCND1 Amp (n=1) CDK4 (n=1)	KRAS Amp (n=1) FGFR3-TACC3 fusion (n=1) KRAS G12D (n=1) CDKN2A G101W (n=1)

^aGenomic analysis used Guardant360 for ctDNA NGS and ThermoFisher for tissue NGS; ^bEGFR amp (CNV \geq 7) and MET amp (CNV \geq 3) were based on tumor NGS; other amps were based on tumor NGS (CNV \geq 7) or ctDNA NGS (CNV \geq 3). Single nucleotide variants, insertion/deletions, and insertion call threshold was \geq 1% allele frequency with \geq 250 reads. ^cEight patients had \geq 1 alteration. Amp, amplification; CNV, copy number variation

Response Among Patients without Identified EGFR/MET-based Resistance

- Among the remaining 28 patients who did not have an identified EGFR/MET-based resistance by NGS^a, the ORR was 29%, mDOR was 8.3 months, CBR was 54%, and mPFS was 4.1 months
- All 8 responders in those without identified EGFR/MET-based resistance were unknown resistance by NGS

aGenomic analysis used Guardant360 for ctDNA NGS and ThermoFisher for tissue NGS. bTwo patients had ≥1 alteration. NE, not evaluable (no postbaseline assessment for 4 patients)

Response Among Patients with EGFR/MET Expression Identified by IHC Staining

- 20/45 had tumor biopsy sufficient for IHC staining after tumor NGS
- 10 were IHC+ for EGFR/MET (combined EGFR+MET H score ≥400), with remainder defined as IHC-
- IHC+ patients had ORR of 90%, mDOR of 9.7 months, CBR of 100%, and mPFS of 12.5 months

IHC, immunohistochemistry; NE, not evaluable (no postbaseline assessment for 2 patients)

IHC Identified Patients Regardless of Underlying Genetic Resistance Mechanisms

 5 responders in the IHC subgroup had unknown genetic mechanism of resistance

Conclusions

- Amivantamab in combination with lazertinib yielded durable responses in patients who progressed on osimertinib as prior line of therapy
 - 36% ORR, mDOR of 9.6 months, 64% CBR, and mPFS of 4.9 months
- NGS identified a subgroup of patients more likely to respond (EGFR/METbased resistance)
 - However, half of the confirmed responders were not identified by NGS using these criteria
- IHC analysis suggests high EGFR and MET expression may be an alternative approach to identify potential responders
- CHRYSALIS-2^a, a phase 1/1b study, will seek to validate these biomarkers prospectively in a new cohort requiring tumor biopsy at entry (Cohort D) among post-osimertinib EGFRm NSCLC (NCT04077463)

RACIAL DISPARITIES IN BIOMARKER TESTING AND CLINICAL TRIAL ENROLLMENT IN NON-SMALL CELL LUNG CANCER (NSCLC)

Debora S Bruno¹, Lisa M Hess², Xiaohong I Li², Eric W Su², Yajun E Zhu², Monaliben Patel¹

1. University Hospitals, Case Western Reserve University, Cleveland, OH

2. Eli Lilly and Company, Indianapolis, IN

June 4, 2021

Debora S. Bruno, MD, MS Case Comprehensive Cancer Center Case Western Reserve University Division of Hematology/Oncology University Hospitals Cleveland Medical Center

Biomarker Testing Impacts NSCLC Outcomes

Lung cancer mortality

- Leading cause of cancer-related deaths in the U.S. and worldwide^{1,2}
- Non-small cell lung cancer (NSCLC) accounts for 85% of all cases³
- 57% of patients with stage IV upon presentation⁵
- 5-yr OS of stage IV disease: 6%²

Biomarker-driven therapies improve overall survival

- Immunotherapy and kinase inhibitors lead to higher 5-yr OS in stage IV NSCLC subpopulations: 15-60%⁵⁻⁷
- Biomarker testing is fundamental in advanced NSCLC
- Siegel RL. Cancer J Clin 2021 1.
- 2. WHO. https://www.who.int/news-room/fact-sheets/detail/cancer
- 3. Tan and Hug. NSCLC. Mescape. March 2021
- 4. Howlader N, SEER Cancer Statistics Review 1975-2017
- 5. Lin JJ. J Thorac Oncol 2016
- 6. Pacheco JM. J Thorac Oncol 2019 7.
 - Garon EB, J Clin Oncol 2019

Comprehensive Biomarker Testing is Standard of Care for Stage IV NSCLC

• NSCLC is a heterogeneous disease

- Currently 7 genomic alterations and 3 PD-L1 subsets of stage IV NSCLC¹ •
- Since 2020: FDA approved 4 targeted therapies in 1L for MET exon 14 skipping, RET and ALK fusions
- National guidelines recommend broad-based testing for PD-L1 and actionable mutations¹ •
- Genomic testing identifies best approved therapies and is an eligibility criteria for many clinical ٠ trials

• NSCLC survival disparities

- Racial disparities in OS persist despite improvements in last ~20 years² ٠
- Access to high quality care and clinical trials may contribute to disparities³ •
- Biomarker testing uptake in real practice the impact of race is unknown ٠

1. Ettinger DS, J Natl Compr Netw 2021 2.

47

Howlader N, N Engl J Med 2020

3

Zaorsky NG. J Natl Compr Netw 2019

Methods

Study Objective

- To investigate racial differences in biomarker testing, use of targeted therapy and clinical trial enrollment among patients in the U.S. diagnosed with advanced/metastatic NSCLC
- Study Design
 - Retrospective cohort study of patients with advanced/metastatic NSCLC Jan 2017 – October 2020
 - Flatiron Health Electronic Health Record (EHR)-derived de-identified database: ~800 sites of care
 - De-identified data are not considered human subjects research and is exempt from IRB review (Copernicus Group IRB)

Study Cohort

N=10,333

Eligibility criteria

- Advanced/metastatic NSCLC
- Diagnosed 01/01/17 10/31/20
- Treated within 120 days from diagnosis
- No other synchronous metastatic cancers (e.g. breast, colorectal, gastric)
- No death observed within 120 days

Biomarker Testing

All patients with NSCLC						
	NSCLC overall N=14,768	White N=9,793	Black/AA N=1,288	P-value, White vs Black/AA		
Ever tested	11,297 (76.5%)	7477 (76.4%)	948 (73.6%)	0.03		
Tested prior to first line therapy		6,064 (61.9%)	784 (60.9%)	0.47		
Ever NGS tested	7,185 (48.7%)	4,904 (50.1%)	513 (39.8%)	<0.0001		
NGS tested prior to first line therapy		3,081 (31.5%)	332 (25.8%)	<0.0001		
Patie	nts with non-squamou	us NSCLC				
Non-squamousWhiteBlack/AAP-value, White vsN=10,333N=6,705N=922Black/AA						
Ever tested	8,786 (85.0%)	5,699 (85.0%)	764 (82.9%)	0.09		
Tested prior to first line therapy		4,881 (72.8%)	662 (71.8%)	0.52		
Ever NGS tested	5,494 (53.2%)	3,668 (54.7%)	404 (43.8%)	<0.0001		
NGS tested prior to first line therapy 2,452 (36.6%) 274 (29.7%) <0.0001						

AA = African American; NGS = next-generation sequencing

Clinical Trial Participation*

All patients with NSCLC				
	NSCLC overall N=14,768	White N=9,793	Black/AA N=1,288	P-value, white vs black
Evidence of trial participation	484 (3.3%)	385 (3.9%)	24 (1.9%)	0.0002
No evidence of participation	14,284 (96.7%)	9,408 (96.1%)	1,264 (98.1%)	
Patients with non-squamous NSCLC				
	Patients with	non-squamous NS	CLC	
	Non-squamous N=10,333	Non-squamous NS White N=6,705	elc Black/AA N=922	P-value, white vs black
Evidence of trial participation	Patients with Non-squamous N=10,333 343 (3.3%)	Non-squamous NS White N=6,705 261 (3.9%)	dLC Black/AA N=922 19 (2.1%)	P-value, white vs black

*Evidence of clinical trial participation = yes if one or more drugs received by the patient at any time after diagnosis indicated "clinical trial drug." There is no specific variable for clinical trial participation in the EHR database.

NGS Testing and Clinical Trial Participation*

All patients with NSCLC				
	NSCLC overall N=14,768	Ever NGS tested (n=7,185)	Never NGS tested (n=7,583)	P-value, tested vs not
Evidence of trial participation	484 (3.3%)	318 (4.4%)	166 (2.2%)	<0.0001
No evidence of participation	14,284 (96.7%)	6,867 (95.5%)	7,417 (97.8%)	\U.UUU1
Patients with non-squamous NSC	LC			
	Non-squamous N=10,333	Ever NGS tested (n=5,494)	Never NGS tested (n=4,839)	P-value, tested x not
Evidence of trial participation	343 (3.3%)	236 (4.3%)	107 (2.2%)	<0.0001
No evidence of participation	9,990 (96.7%)	5,258 (95.7%)	4,732 (97.8%)	<0.0001

*Evidence of clinical trial participation = yes if one or more drugs received by the patient at any time after diagnosis indicated "clinical trial drug." There is no specific variable for clinical trial participation in the EHR database.

Conclusions

- Real world practice: Patients who are Black/AA are less likely to undergo NGS testing when compared to those who are White (39.8% versus 50.1%, p<0.0001)
- Black/AA patients in this cohort were significantly less likely to be treated in clinical trials
- Participation in clinical trials was higher in patients undergoing NGS testing
 - In adjusted analyses, factors associated with clinical trial participation among Black and White patients included: NGS testing, biomarker testing, age, histology, race, stage III vs IV, and practice volume
- While multiple factors are known to impact health care disparities, access to and receipt of appropriate biomarker testing may be an attenable goal in order to ensure equal access to quality care
- Ongoing robust set of adjusted analyses further investigating these relationships in other tumor types, including the use of additional data sets
 Scan or click the QR code or use this URL

(https://lillyscience.lilly.com/congress/AmOncMtgJun2021) for a list of all Lilly content presented at the congress

Pooled Analyses of Immune-Related Adverse Events and Efficacy From the Phase 3 Trials IMpower130, IMpower132 and IMpower150

2021 ASCO

ANNUAL MEETING

Mark A. Socinski,¹ Robert M. Jotte,² Federico Cappuzzo,³ Makoto Nishio,⁴ Tony S. K. Mok,⁵ Martin Reck,⁶ Gene Finley,⁷ Wei Yu,⁸ Hina Patel,⁸ Nindhana Paranthaman,⁸ Ilze Bara,⁸ Howard West⁹

¹AdventHealth Cancer Institute, Orlando, FL, USA; ²Rocky Mountain Cancer Centers, Denver, CO, USA and US Oncology, Houston, TX, USA; ³Istituto Nazionale Tumori "Regina Elena," Rome, Italy; ⁴The Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, Japan; ⁵State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong; ⁶Lung Clinic Grosshansdorf, Airway Research Center North, German Center of Lung Research, Grosshansdorf, Germany; ⁷Allegheny Health Network Cancer Institute, Pittsburgh, PA, USA; ⁸Genentech, Inc., South San Francisco, CA, USA; ⁹City of Hope Comprehensive Cancer Center, Duarte, CA, USA

Background

- Immune-related adverse events (irAEs), which are caused by off-target immune and inflammatory activity, have been reported in up to 80% of patients receiving immune checkpoint inhibitor (ICI) monotherapy and up to 95% of those receiving ICI combination therapy¹
- Increasing evidence suggests that the occurrence of irAEs with PD-L1/PD-1 inhibitor therapy may be predictive of improved outcomes in cancers such as NSCLC²⁻⁵
- Atezolizumab (anti–PD-L1) has shown efficacy and tolerability in patients with NSCLC and is currently approved for use in the first- and second-line and beyond settings⁶
- The Phase III IMpower130 and IMpower132 trials evaluated the efficacy and safety of atezolizumab + chemotherapy for first-line treatment of advanced NSCLC; IMpower150 evaluated atezolizumab + chemotherapy ± bevacizumab⁷⁻⁹
 - IMpower130 and IMpower150 both met their co-primary OS and PFS endpoints, while IMpower132 met its co-primary PFS, but not OS, endpoint
- This post hoc exploratory analysis evaluated the association between irAEs and efficacy in IMpower130, IMpower132 and IMpower150 using pooled data

^{1.} Jamal S, et al. J Rheumatol. 2020;47:166-75. 2. Remon J, et al. Thorac Oncol. 2019;14:963-7. 3. Zhou X, et al. BMC Med. 2020;18:87. 4. von Pawel J, et al. Ann Oncol. 2017;28:v469. 5. Haratani K, et al. JAMA Oncol. 2018;4:374-8. 6. TECENTRIQ (atezolizumab). Prescribing information. Genentech, 2020. 7. West H, et al. Lancet Oncol. 2019;20:924-37. 8. Nishio M, et al. J Thorac Oncol. 2021;16:653-64. 9. Socinski MA, et al. N Engl J Med. 2018;378:2288-301.

Study designs

atezo; atezolizumab; BSC, best supportive care; bev, bevacizumab; carbo, carboplatin; chemo, chemotherapy; cis; cisplatin; IHC, immunohistochemistry; INV, investigator; nsq, non-squamous; pac, paclitaxel; pem; pemetrexed; WT, wild type. ^a Atezo: 1200 mg IV q3w. ^b Carbo: AUC 6 mg/mL/min IV q3w. ^c nab-Pac: 100 mg/m² IV q3w. ^d Pem: 500 mg/m² IV q3w. ^e Cis: 75 mg/m² IV q3w. ^f Patients with a sensitizing *EGFR* mutation or *ALK* translocation must have disease progression or had treatment intolerance with ≥1 approved targeted therapies. ^g Pac: 200 mg/m² IV q3w. ^h Bev: 15 mg/kg IV q3w.

Mark A. Socinski IMpower130/132/150 pooled irAEs https://bit.ly/3gZPrMq

Methods and analysis plan

irAEs

Defined using the Medical Dictionary for Regulatory Activities preferred terms, which included diagnosed immune conditions as well as signs and symptoms potentially representative of immune-related events regardless of investigator-assessed causality

^a Data cutoffs: March 15, 2018 (IMpower130); May 22, 2018 (IMpower132); September 13, 2019 (IMpower150).

Mark A. Socinski IMpower130/132/150 pooled irAEs https://bit.ly/3gZPrMq

Summary of irAEs^a

irAE <i>,</i> n (%)	Atezo arm (n=1557)		Control arm (n=900)	
	Any grade	Grade 3-5	Any grade	Grade 3-5
Any irAE	753 (48)	174 (11)	289 (32)	45 (5)
Rash	435 (28)	38 (2)	160 (18)	11 (1)
Hepatitis ^b	226 (15)	73 (5)	92 (10)	17 (2)
Hypothyroidism	192 (12)	6 (<1)	33 (4)	0
Pneumonitis	88 (6)	25 (2)	17 (2)	8 (1)
Hyperthyroidism	59 (4)	3 (<1)	14 (2)	0
Colitis	26 (2)	17 (1)	3 (<1)	2 (<1)
Infusion-related reactions	17 (1)	1 (<1)	6 (1)	1 (<1)
Adrenal Insufficiency	19 (1)	3 (<1)	3(<1)	1 (<1)
Pancreatitis	15 (1)	6 (<1)	4 (<1)	2 (<1)

The median time to onset of irAEs was 1.7 mo (range, 0.0-34.7) in the atezolizumab arm and 1.4 mo (range, 0.0-17.2) in the control arm

^a Events represent medical concepts and are not single MedDRA preferred terms. Includes events occurring in >1% incidence in any arm. ^b Includes both hepatitis laboratory abnormalities and diagnosis.

ORR by irAE status

OS by irAE status^{a,b}

Time-dependent Cox model: HR, 0.69 (95% CI: 0.60, 0.78) **Time-dependent Cox model**: HR, 0.82 (95% CI: 0.68, 0.99)

Patients who experienced irAEs had longer OS than those without irAEs in both the atezo-containing and control arms

^a Kaplan-Meier curves are not adjusted for the timing of irAE onset. ^b An interaction test of irAE status and treatment arms did not reveal statistical significance (P=0.13).

Mark A. Socinski IMpower130/132/150 pooled irAEs https://bit.ly/3gZPrMq

OS by irAE grade in the atezolizumab arm

Mark A. Socinski IMpower130/132/150 pooled irAEs https://bit.ly/3gZPrMq

Conclusions

- In these exploratory pooled analyses of the IMpower130, IMpower132 and IMpower150 trials, patients who experienced irAEs showed longer OS than those without irAEs in both the atezolizumab-containing and control arms
 - OS HRs from the time-dependent Cox model: atezolizumab arm, 0.69 (95% CI: 0.60, 0.78); control arm, 0.82 (95% CI: 0.68, 0.99)
 - Patients in the atezolizumab-containing arm with Grade 3-5 irAEs had the shortest OS vs those with Grade 1/2 irAEs or no irAEs, potentially due to treatment interruption/discontinuation
- In both arms, landmark analyses at 1, 3, 6 and 12 months showed longer OS in patients with irAEs vs those without irAEs; patients benefited from atezolizumab vs control regardless of whether they had experienced irAEs
- Data from these analyses suggest an association between irAEs and efficacy in patients with NSCLC and further support the use of atezolizumab combined with chemotherapy, with or without bevacizumab, in the first-line treatment setting

PHASE III COMPARISON OF HIGH DOSE ONCE DAILY (QD) THORACIC RADIOTHERAPY (TRT) WITH STANDARD TWICE-DAILY (BID) TRT IN LIMITED STAGE SMALL CELL LUNG CANCER (LSCLC): CALGB 30610 (ALLIANCE) / RTOG 0538

Jeffrey A. Bogart, Xiaofei Wang, Gregory Masters, Junheng Gao, Ritsuko Komaki, Laurie E. Gaspar, John Heymach, Michael Christian Dobelbower, Charles Kuzma, Saiama Waqar, William J Petty, Tom Stinchcombe, Jeffrey D. Bradley, Everett Vokes

2021 ASCO

ANNUAL MEETING

Background

- The optimal TRT dose and schedule for LSCLC remains an area of active study
- Despite Level 1 evidence supporting 45 Gy BID TRT / 3 weeks (Intergroup 0096), most patients are treated with once-daily TRT in clinical practice
- Pilot trials from CALGB (C-39808) and RTOG (R-0239) studied high-dose TRT regimens with higher *predicted* biologic effective doses (BED) compared with 45 Gy BID

	Total Dose	Dose/fx	Frequency	Fractions	Duration
Standard	45 Gy	1.5 Gy	Twice-daily	30	3 weeks
CALGB	70 Gy	2.0 Gy	Once-daily	35	7 weeks
RTOG	61.2 Gy Concomitant Boost (CB)	1.8 Gy	QD x 16 days then BID x 9 days	34	5 weeks

- Chemotherapy : Cisplatin 80 mg/m2 day 1 and etoposide 100mg/m2 day 1-3 q 21 days x 4 cycles
- TRT to begin with the first cycle of chemotherapy

Overall Survival

Progression-free Survival

Adverse Events

Overall Maximum:	Arm	N(%)
Grade 3	A	93 (31.5%)
	В	78 (25.9%)
Grade 4	А	149 (50.5%)
	В	161 (53.5%)
Grade 5	А	4 (1.4%)
	В	11 (3.7%)
Hematologic	Adverse Events (no Grade 5 AEs)
Grade 3	A	66 (22.4%)
	В	70 (23.3%)
Grade 4	A	140 (47.5%)
	В	157 (52.2%)

Arm A = 45 Gy BID	
Arm B = 70 Gy QD	

Non-hematologic Adverse Events

	Arm	N(%)
Grade 3	А	130 (44.1%)
	В	128 (42.5%)
Grade 4	А	36 (12.2%)
	В	49 (16.3%)
Grade 5	А	4 (1.4%)
	В	11 (3.7%)

	Arm A BID	Arm B QD
Dyspnea	13 (4.3%)	21 (7 %)
Pneumonitis	3 (1 %)	3 (1%)

Conclusions

- CALGB 30610 failed to prove that 70 Gy QD TRT significantly improves OS compared with standard 45 Gy BID TRT
- Outcomes in the 70 Gy cohort provide the best evidence available for high dose once daily TRT in LSCLC
 - The study was not designed to assess whether 70 Gy QD was non-inferior to 45 Gy BID
- Pending:
 - In-depth analysis of adverse events according to treatment arm
 - Analysis of QoL, failure patterns, impact of variables including TRT timing, technique, and chemotherapy regimen
 - Dosimetry review to assess relationship between dose to normal tissues and outcomes

Additional points

Trial	Comparison	Med OS (months)	OS (5-year)
Intergroup 0096 (n=382)	45 Gy (1.5 Gy BID) 45 Gy (1.8 Gy QD)	23 months 19 months HR: 1.2 p=0.04	26% 16%
CONVERT (n=547)	45 Gy (1.5 Gy BID) 66 Gy (2 Gy QD)	30 months 25 months HR: 1.18, p=0.14	34% 31%
CALGB 30610 * (n=638)	45 Gy (1.5 Gy BID) 70 Gy (2 Gy QD)	28.5 months 30.5 months HR: 0.94, p=0.59	29% 34%

* Patients with NO disease not eligible

TURRISI, NEJM 1999

FAIVRE-FINN, LANCET ONCOLGY 2017

A Randomized Phase II trial of Oral Vinorelbine as Second-Line Therapy for Patients with Malignant Pleural Mesothelioma

Dean Anthony Fennell¹, Angela Casbard, Catharine Porter, Robin Rudd, Jason Francis Lester, Marianne Nicolson, Bruno Morgan, Jeremy Peter Steele, Liz Darlison, Georgina Mary Gardner, Lisette Sheena Nixon, Terri Kitson, Ann White, Gareth Owen Griffiths, Charlotte Poile, Aarti Gaba, Sara Busacca, Catherine Jane Richards, VIM Trial Group

¹University of Leicester and University Hospitals of Leicester, Leicester, United Kingdom

BACKGROUND

- All patients with malignant pleural mesothelioma (MPM) eventually relapse following standard chemotherapy.
- However, there is no standard treatment option in this setting.
- Vinorelbine exhibits useful clinical activity but has not been formally evaluated in a randomised clinical trial, despite its widespread off-label use worldwide.
- BRCA1 regulates spindle assembly checkpoint in MPM and predicts vinorelbine sensitivity in preclinical models [1,2], suggesting that BRCA1 negative patients may be chemoresistant.
VIM Trial Design

Primary outcome measure: To establish the anti-tumour activity of vinorelbine as measured by progression free survival (PFS)

Secondary Outcome measures:

•PFS by BRCA1 expression Overall survival (OS), & objective response rate (ORR) as assessed by modified RECIST

•Safety, tolerability (side effects) and feasibility of use (number of participants requiring dose delays or reductions and/or treatment withdrawal)

Response

Best response

	ASC+VIN (N=98)	ASC (N=56)
PR rate	3.1%	1.8%
SD rate	62.2%	46.4%
Median duration of response (95%CI) (months)	7.2 (3.1-8.5)	4.2 (4.2-4.2)
Median duration of PR/SD	4.2 (2.8-6.9)	3.7 (2.8-4.2)
PD rate	19.4%	28.6%

Progression Free Survival

Overall Survival

	ASC+VIN (N=98)	ASC (N=56)
Median OS (95%CI) (months)	9.3 (6.7-11.8)	9.1 (5.7-14.1)
HR (95% CI)	0.79 (0.53-1.17)	
Two-sided log- rank test p- value	0.24	

Progression Free Survival by BRCA1 expression

CONCLUSIONS

- VIM met its endpoint of statistically improved PFS with vinorelbine versus ASC in relapsed malignant mesothelioma
- There was no evidence to support BRCA1 as being predictive
- Vinorelbine is a safe and effective treatment and should be considered a treatment option for patients with relapsed mesothelioma