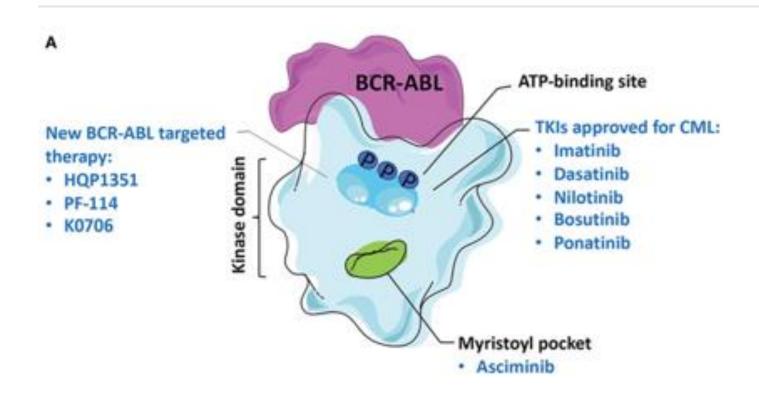

ASCO 2024 Hematologic malignancy

SUZANNE FANNING, DO
PRISMA HEALTH CANCER INSTITUTE

Outline

Myeloid malignancies


- a. CML
- b. AML

NHL

- a. Mantle cell
- b. Follicular

Multiple myeloma

- a. NDMM
- b. RRMM

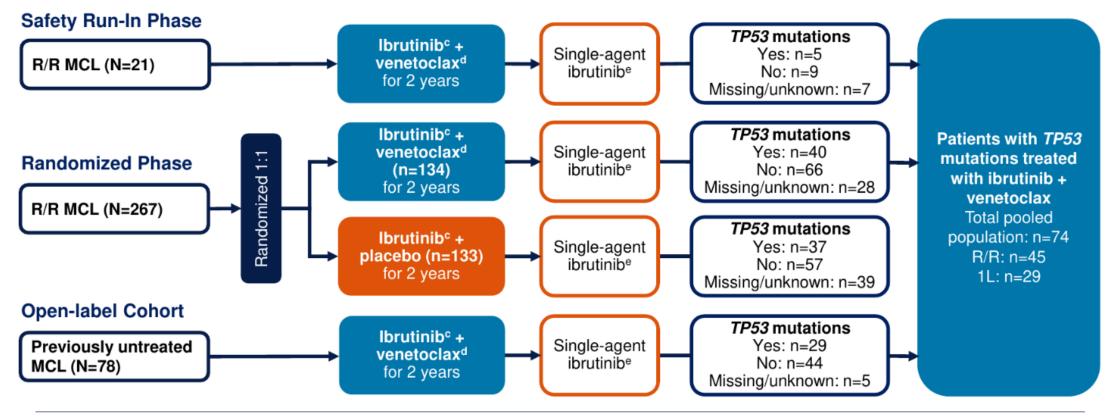
ASC4FIRST, a pivotal phase 3 study of asciminib (ASC) vs investigator-selected tyrosine kinase inhibitors (IS TKIs) in newly diagnosed patients (pts) with chronic myeloid leukemia (CML): Primary results

Timothy P. Hughes, Andreas Hochhaus, Naoto Takahashi, Ghayas C. Issa, Richard A. Larson, Felice Bombaci, Jianxiang Wang, Dong-Wook Kim, Dennis Dong Hwan Kim, Jiri Mayer, Yeow Tee Goh, Phillipp D. Le Coutre, David Jacob Andorsky, Shruti Kapoor, Tracey McCulloch, Kamel Malek, Lillian Yau, Sophie Ifrah, Jorge E. Cortes, ASCO 2024

ASC4FIRST, a pivotal phase 3 study of asciminib (ASC) vs investigatorselected tyrosine kinase inhibitors (IS TKIs) in newly diagnosed patients (pts) with chronic myeloid leukemia (CML): Primary results

- -1:1 randomization of ascinimib vs. investigator choice TKI
- -At data cutoff, treatment was ongoing in 86% on ASC
- -ASC had highest MMR rate at 48 weeks
- -ASC with deepest response –MR4 and MR 4.5
- -ASC with less grade ≥3 AE's
- -ASC with half the rate of AE's leading to discontinuation
- -Rate of arterial occlusive events 1% ASC, 0% IM, 2% 2G TKI's

Timothy P. Hughes, Andreas Hochhaus, Naoto Takahashi, Ghayas C. Issa, Richard A. Larson, Felice Bombaci, Jianxiang Wang, Dong-Wook Kim, Dennis Dong Hwan Kim, Jiri Mayer, Yeow Tee Goh, Phillipp D. Le Coutre, David Jacob Andorsky, Shruti Kapoor, Tracey McCulloch, Kamel Malek, Lillian Yau, Sophie Ifrah, Jorge E. Cortes, ASCO 2024

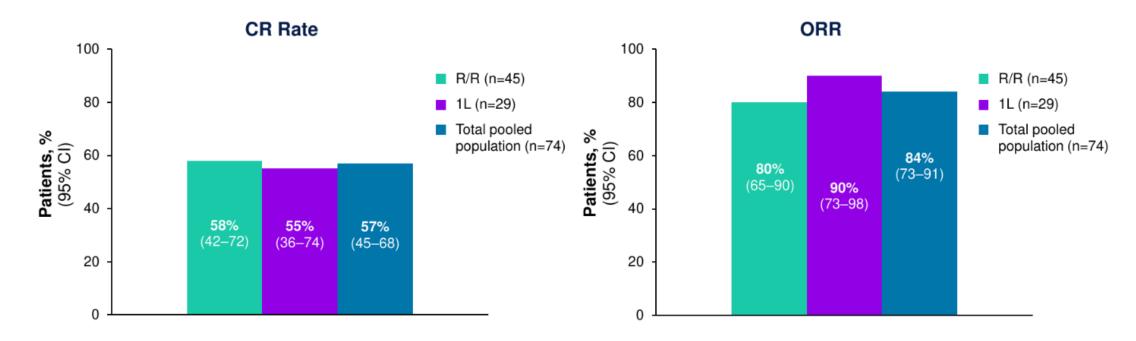

Efficacy and Safety of Ibrutinib Plus Venetoclax in Patients With Mantle Cell Lymphoma and *TP53*Mutations in the SYMPATICO Study

Michael Wang, MD¹, Wojciech Jurczak, MD, PhD², Marek Trneny, MD³, David Belada, MD⁴, Tomasz Wrobel, MD, PhD⁵, Nilanjan Ghosh, MD, PhD⁶, Mary-Margaret Keating, MDⁿ, Tom van Meerten, MD, PhD®, Ruben Fernandez Alvarez, MD⁰, Gottfried von Keudell, MD, PhD¹⁰, Catherine Thieblemont, MD, PhD¹¹, Frederic Peyrade, MD¹², Marc Andre, MD¹³, Marc Hoffmann, MD¹⁴, Maoko Naganuma, MSc¹⁵, Edith Szafer-Glusman, PhD¹⁵, Jennifer Lin, MS, MA¹⁵, James P. Dean, MD, PhD¹⁵, Jutta K. Neuenburg, MD, PhD¹⁵, Constantine S. Tam, MD, MBBS¹⁶

¹Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland; ³General University Hospital in Prague, Prague, Czech Republic; ⁴4th Department of Internal Medicine - Haematology, Charles University, Hospital and Faculty of Medicine, Hradec Králové, Czech Republic; ⁵Wrocław Medical University, Wrocław, Poland; ⁶Levine Cancer Institute, Atrium Health, Charlotte, NC, USA; ⁷Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada; ⁸Universitair Medisch Centrum Groningen, Groningen, Netherlands; ⁹Hospital Universitario de Cabueñes, Asturias, Spain; ¹⁰Beth Israel Deaconess Medical Center, Boston, MA, USA; ¹¹Université de Paris, Assistance Publique-Hôpitaux de Paris, Hôpital Saint-Louis, service d'hémato-oncologie, Paris, France; ¹²Centre Antoine Lacassagne, Nice, France; ¹³CHU UCL Namur Mont-Godinne, Yvoir, Belgium; ¹⁴University of Kansas Cancer Center, Westwood, KS, USA; ¹⁵AbbVie, North Chicago, IL, USA; ¹⁶Peter MacCallum Cancer Centre, Alfred Health and Monash University, Melbourne, Victoria. Australia

abbvie

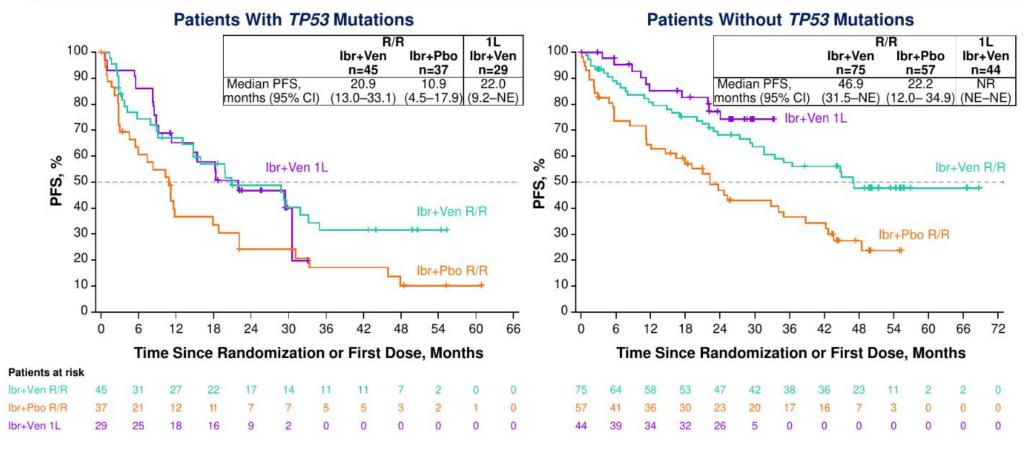
- SYMPATICO^a is a multinational, randomized, double-blind, placebo-controlled, Phase 3 study
- Data were pooled (3 cohorts) for patients with TP53 mutations (no deletions)^b treated with ibrutinib + venetoclax

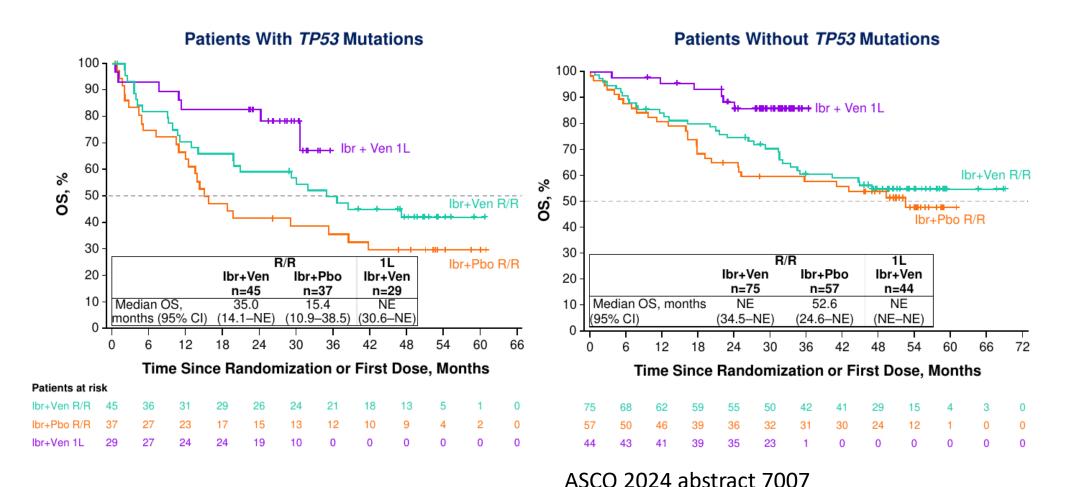

¹L, first-line.

aNCT03112174. Somatic mutations in exons 1–11 of *TP53* were evaluated by next-generation sequencing with a variant allele fraction cutoff of 2%. 560 mg once daily. 5-week ramp-up to 400 mg once daily. 560 mg once daily until PD or unacceptable toxicity.

Baseline Characteristics of Patients With *TP53* Mutations Treated With Ibrutinib + Venetoclax

Characteristic	R/R n=45	1L n=29	Total pooled population n=74
Age Median (range), years ≥65 years, n (%)	67 (44–82) 28 (62)	66 (41–79) 18 (62)	67 (41–82) 46 (62)
ECOG PS, n (%) 0 1–2	25 (56) 20 (44)	15 (52) 14 (48)	40 (54) 34 (46)
MCL histology, n (%) Typical Blastoid Pleomorphic Other	29 (64) 8 (18) 3 (7) 5 (11)	18 (62) 0 5 (17) 6 (21)	47 (64) 8 (11) 8 (11) 11 (15)
Simplified MIPI score, n (%) Low risk Intermediate risk High risk Missing	7 (16) 15 (33) 21 (47) 2 (4)	5 (17) 13 (45) 11 (38) 0	12 (16) 28 (38) 32 (43) 2 (3)
Bulky disease, n (%) ≥5 cm ≥10 cm	18 (40) 3 (7)	9 (31) 3 (10)	27 (36) 6 (8)
Extranodal disease, n (%)	24 (53)	13 (45)	37 (50)


with TP53 Mutations


	R/R	1L	Total	
	n=26	n=16	n=42	
Median DOCR, months (95% CI)	NR	20.5	32.2	
	(18.7–NE)	(5.4–NE)	(18.7–NE)	

	R/R	1L	Total
	n=36	n=26	n=62
Median DOR, months	26.5	20.5	26.0
(95% CI)	(16.8–NE)	(12.0-NE)	(16.8–32.2)

PFS Benefit Was Observed With Ibrutinib + Venetoclax in Patients With and Without TP53 Mutations

OS Benefit With Ibrutinib + Venetoclax in Patients With and Without TP53 Mutations

Safety in Patients With *TP53* Mutations was Consistent With Known Safety Profiles of Ibrutinib and Venetoclax

AE, n (%)	R/R	1L	Total
	n=45	n=29	n=74
Grade ≥3 AEs	37 (82)	22 (76)	59 (80)
Serious AEs	26 (58)	15 (52)	41 (55)
AEs leading to discontinuation Ibrutinib only Venetoclax only Both	15 (33) 4 (9) 2 (4) 9 (20)	7 (24) 3 (10) 0 4 (14)	22 (30) 7 (9) 2 (3) 13 (18)
AEs leading to dose reduction Ibrutinib only Venetoclax only Both	20 (44)	14 (48)	34 (46)
	9 (20)	5 (17)	14 (19)
	6 (13)	3 (10)	9 (12)
	5 (11)	6 (21)	11 (15)
AEs leading to death Ibrutinib relateda Venetoclax relateda	6 (13)	5 (17)	11 (15)
	1 (2)	0	1 (1)
	0	0	0

AE, n (%)	R/R	1L	Total
	n=45	n=29	n=74
Most frequent any- grade AEs ^b Diarrhea Neutropenia Fatigue Nausea Thrombocytopenia Anemia COVID-19 Vomiting Hypomagnesemia Pyrexia	34 (76) 18 (40) 13 (29) 16 (36) 15 (33) 13 (29) 7 (16) 9 (20) 6 (13) 6 (13)	15 (52) 9 (31) 12 (41) 9 (31) 7 (24) 8 (28) 11 (38) 8 (28) 9 (31) 9 (31)	49 (66) 27 (36) 25 (34) 25 (34) 22 (30) 21 (28) 18 (24) 17 (23) 15 (20)
Most frequent grade ≥3 AEsc Neutropenia Anemia Thrombocytopenia	17 (38)	7 (24)	24 (32)
	8 (18)	3 (10)	11 (15)
	9 (20)	2 (7)	11 (15)
Tumor lysis syndrome Laboratory Clinical	2 (4)	3 (10) 0	5 (7) 0

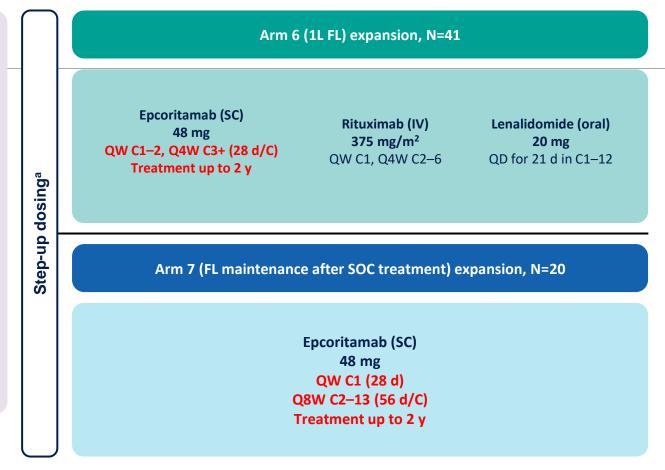
Epcoritamab With Rituximab + Lenalidomide (R²) in Previously Untreated (1L) Follicular Lymphoma (FL) and Epcoritamab: EPCORE NHL-2 Arm 6

Lori A. Leslie, MD,¹ Lorenzo Falchi, MD,² Joost S.P. Vermaat, MD, PhD,³ Gerardo Musuraca, MD, PhD,⁴ David Belada, MD, PhD,⁵ Marcel Nijland, MD, PhD,⁶ Jacob Haaber Christensen, MD, PhD,⁷ Fritz Offner, MD, PhD,⁸ Daniela Hoehn, MD, PhD,⁹ Jennifer Marek,⁹ Liwei Wang, PhD,⁹ Jian Mei, PharmD,¹⁰ Pau Abrisqueta, MD, PhD,¹¹ Joshua D. Brody, MD,¹²

¹John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, USA; ²Lymphoma Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA; ³Leiden University Medical Center, Leiden, Netherlands; ⁴Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori," Meldola, Italy; ⁵4th Department of Internal Medicine – Hematology, University Hospital and Faculty of Medicine, Hradec Králové, Czech Republic; ⁶University Medical Center Groningen and University of Groningen, Groningen, Netherlands; Ōdense University Hospital, Odense, Denmark; ⁶Universitair Ziekenhuis Gent, Ghent, Belgium; ⁶Genmab, Plainsboro, NJ, USA; ¹OAbbVie, North Chicago, IL, USA; ¹Hospital Universitario Vall d'Hebron, Barcelona, Spain; ¹Plcahn School of Medicine at Mount Sinai, New York, NY, USA

Background

- Patients with advanced 11 FL remain incurable¹:
 - R² is a recommended treatment that has shown improved outcomes compared with rituximab alone,² and outcomes are comparable with rituximab + chemotherapy (CR rates, ~50%)^{3,4}
 - Outcomes are still suboptimal, and novel, chemotherapy-free combinations that induce deep and durable responses translating to favorable long-term outcomes in a larger proportion of patients with 1L FL are needed⁵


In EPCORE NHL-2, we assessed the long-term safety and efficacy of fixed-duration epcoritamab + R² in 1L FL (updated data from arm 6)

Study Design

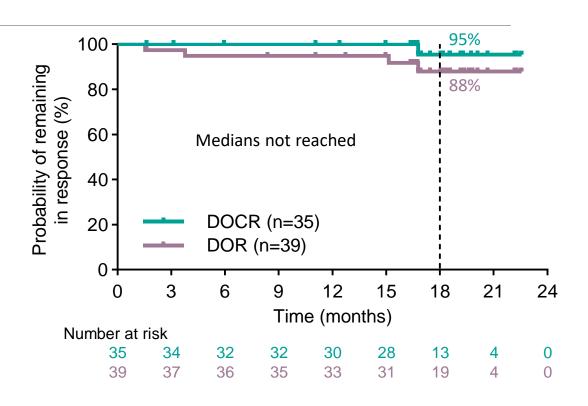
Key inclusion criteria

- CD20+ FL
 - Grade 1, 2, or 3A
- 1L FL (arm 6, 1L FL)
- In CR or PR after 1–2 lines of SOC treatment (arm 7, FL maintenance)
- ECOG PS 0-2
- Measurable disease by CT or MRI (arm 6, 1L FL)
- Adequate organ function

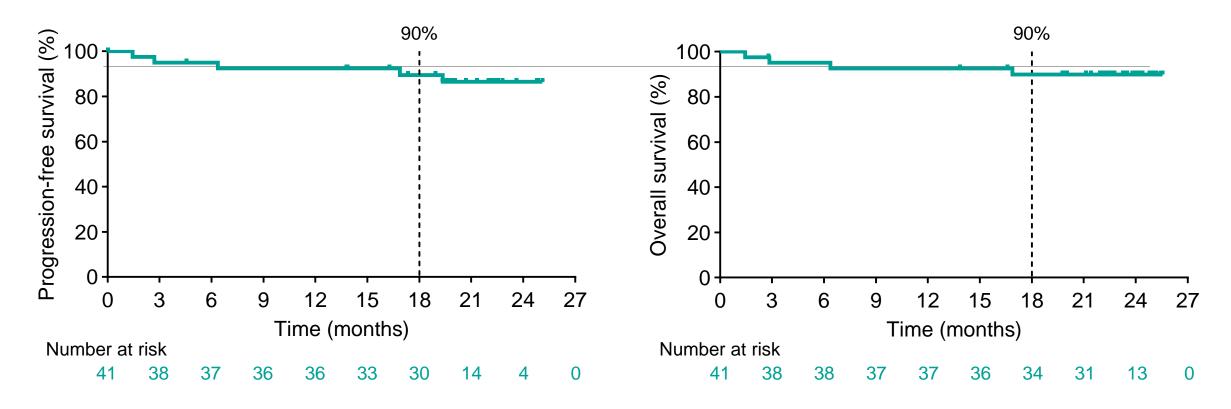
Data cutoff: January 31, 2024

- Primary objective:
 - Arm 6: Antitumor activity (ORR)^b
 - Arm 7: Safety/tolerability
- Key secondary endpoints:
 - Arm 6: Safety/tolerability,
 DOR, DOCR, PFS, OS
 - Arm 7: CR rate,^c DOCR

Arm 6 (1L FL): Baseline Characteristics, Treatment Exposure, and Follow-Up


Characteristic	N=41
Median age, y (range)	57 (39–78)
Male, n (%)	21 (51)
Ann Arbor stage, n (%) ^a	
III	16 (39)
IV	22 (54)
FLIPI, n (%) ^b	
2	15 (37)
3–5	14 (34)
ECOG PS, n (%)	
0	34 (83)
1	6 (15)
2	1 (2)

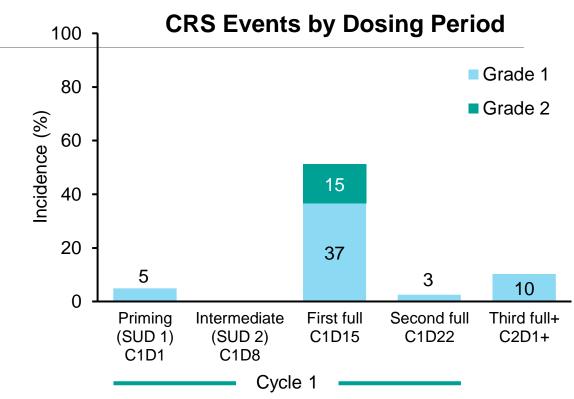
Treatment Exposure and Follow-Up	N=41
Median follow-up, mo (range)	22.8 (1.4+ to 25.6)
Epcoritamab treatment exposure ^c	
Median number of treatment cycles initiated (range) ^d	23 (1–27)
Median duration of treatment, mo (range)	22.0 (0.5–24.2)
Ongoing treatment, n (%)	12 (29)
Completed treatment per protocol, n (%)	14 (34)
Discontinued treatment, n (%)	15 (37)
AE	9 (22)
Patient withdrawal	2 (5)
PD	1 (2)
Othere	3 (7)


Arm 6 (1L FL): Epcoritamab + R² Continued to Show Deep, Durable Responses

	N=41 ^a
Overall response, n (%)	39 (95)
Complete response , n (%)	35 (85)
Partial response, n (%)	4 (10)
Progressive disease, n	0
Median time to response, mo (range)	2.7 (1.2–5.5)
Median time to complete response, mo (range)	2.8 (1.4–11.4)

High rates of patients remaining in response and complete response were observed at 18 months

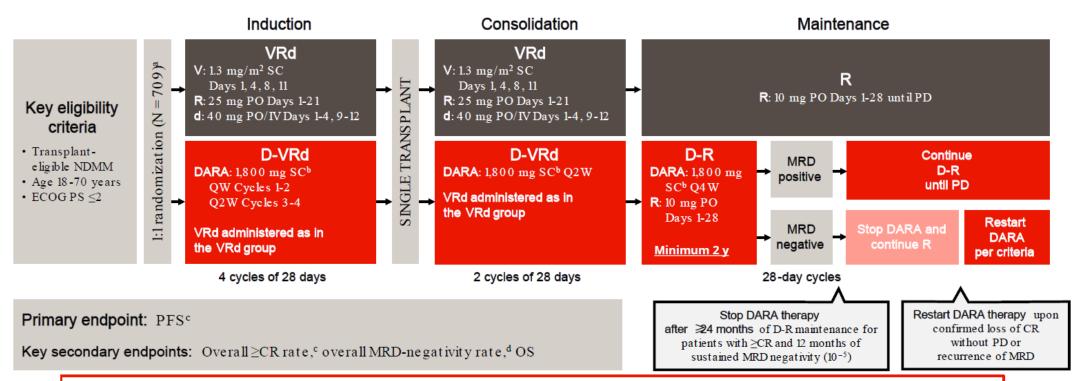
Arm 6 (1L FL): Progression-Free and Overall Survival


High rates of progression-free and overall survival were observed at 18 months

Arm 6 (1L FL): CRS Was Low Grade and Consistent With Prior Reports, With Predictable Timing

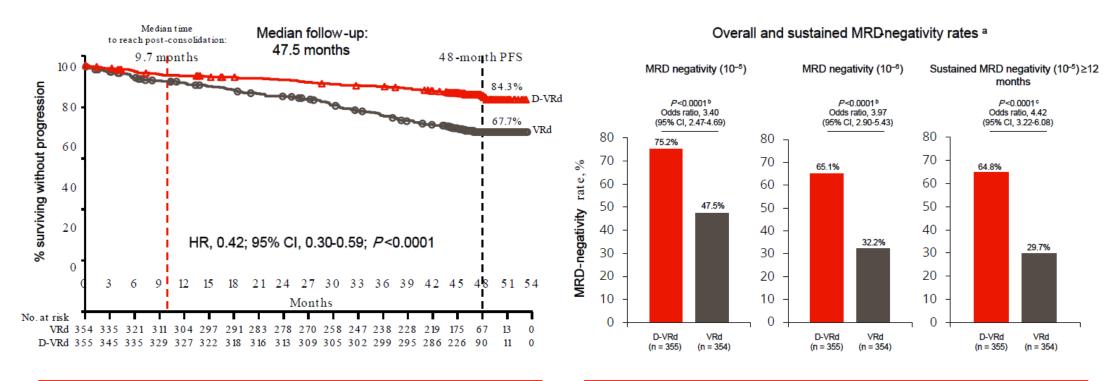
	N=41
CRS, n (%) ^a	23 (56)
Grade 1	17 (41)
Grade 2	6 (15)
Median time to onset after first full dose, d (range)	2 (1–6)
CRS resolution, n/n (%)	23/23 (100)
Median time to resolution, ^b d (range)	3 (1–6)
Treated with tocilizumab, n (%)	4 (10)
Leading to epcoritamab discontinuation, n (%)	0

^aGraded by Lee et al 2019 criteria. ^bMedian is based on longest CRS duration in patients with >1 CRS event.


- CRS timing was predictable; CRS events were primarily confined to cycle 1
- CRS events were low grade and resolved
- No ICANS or clinical tumor lysis syndrome

Conclusions

- Longer follow-up showed that fixed-duration epcoritamab + R² in previously untreated FL leads to deep and durable responses that translate to favorable long-term outcomes
 - ORR 95%, CR rate 85%
 - At 18 months, an estimated 90% of patients remained progression free and alive

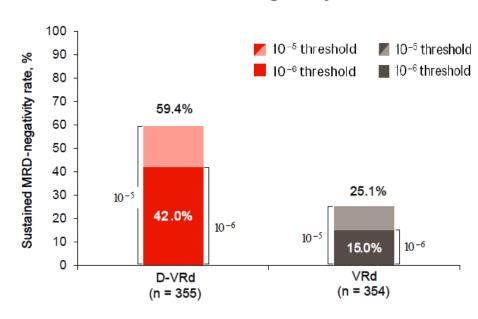

PERSEUS: Study Design

MRD-negativity rate was defined as the proportion of patients who achieved both MRD negativity and ≥CR in the ITT population.

Patients who were not evaluable or had indeterminate results were considered MRD positive.

PERSEUS Primary Analysis: D/Rd Followed by D-R Maintenance Significantly Improved PFS and Depth of Response Versus VRd Followed by R Maintenance¹

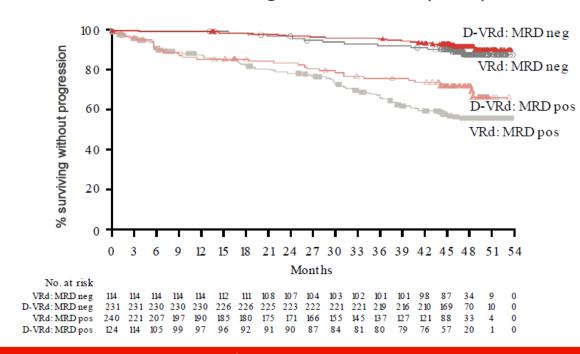
58% reduction in the risk of progression or death in patients receiving D -VRd

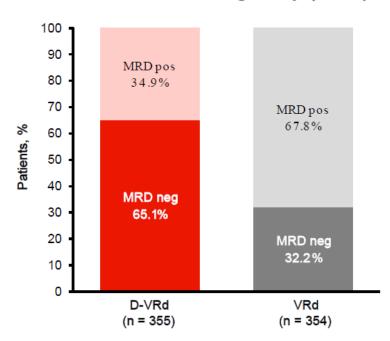

Deep and durable MRD negativity achieved with D -VRd

PERSEUS: Sustained MRDnegativity Rates (10⁻⁵ and 10⁻⁶; ITT)

Sustained MRD negativity ≥12 months

100 10⁻⁵ threshold ■ 10⁻⁵ threshold ■ 10⁻⁶ threshold ■ 10⁻⁶ threshold Sustained MRD-negativity rate, 64.8% 29.7% 10^{-5} 47.3% 10 -5 10 18.6% 10-6 VRd D-VRd (n = 355)(n = 354)


Sustained MRD negativity ≥18 months


- Rates of sustained MRD negativity at 10⁻⁶ were 2.5-fold higher for D -VRd + D-R versus VRd + R
- More than 40% of patients had sustained MRD negativity at 10 ⁻⁶ for ≥18 months with-VRd + D-R

<u>(10⁻⁶; ITT)</u>

PFS according to MRD status (10 ⁻⁶)

Overall MRD negativity (10 ⁻⁶)

- MRD negativity at 10 ⁻⁶ was associated with improved long -term outcomes
- Twice as many patients achieved MRD negativity at 10 ⁻⁶ with D -VRd + D-R versus VRd + R
- Patients remaining MRD positive had improved PFS with D -R maintenance versus R alone

Oral presentation presented at ASCO 2024 meeting

Phase 3 Study Results of Isatuximab, Bortezomib, Lenalidomide, and Dexamethasone (Isa-VRd) Versus VRd for Transplant-Ineligible Patients With Newly Diagnosed Multiple Myeloma (IMROZ)

<u>Thierry Facon, 1 Meletios</u>-Athanasios Dimopoulos, 2 Xavier Leleu, 3 Meral Beksac, 4,5 <u>Ludek</u> Pour, 6 Roman Hajek, 7 <u>Zhuoqang</u> Liu, 8 Jiri Minarik, 9 Philippe Moreau, 10 Joanna Romejko-Jarosinska, 11 Ivan Spicka, 12 Vladimir Vorobyev, 13 Michele Cavo, 14 Hartmut Goldschmidt, 15 Thomas Martin, 16 Salomon Manier, 17 Marie-France Brégeault, 18 Sandrine Macé, 18 Christelle Berthou, 18 Robert Z. Orlowski 19

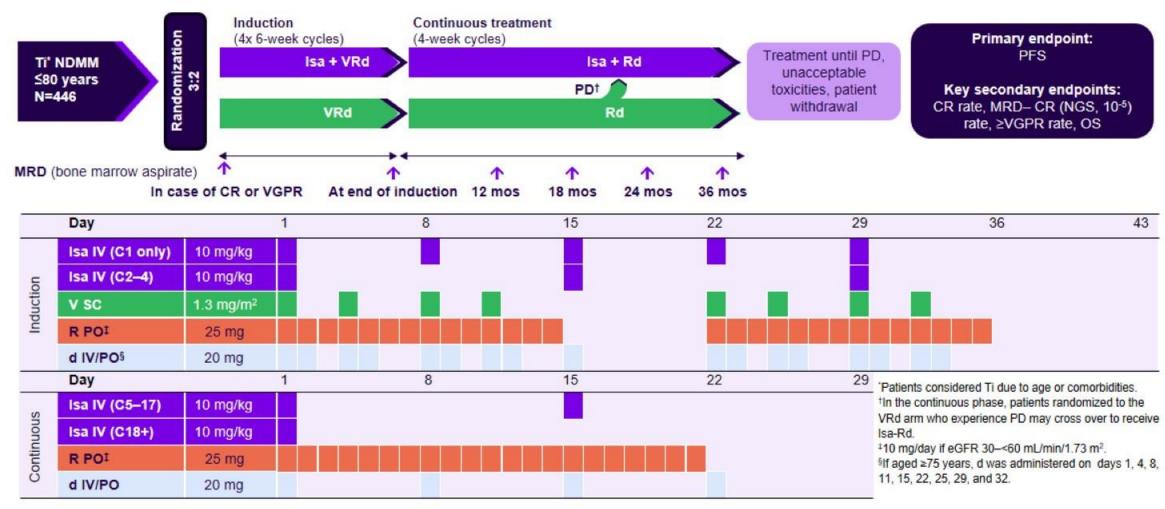
Department of Haematology, University of Lille, and French Academy of Medicine, Paris, France; Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Greece; Service d'Hématologie et Thérapie Cellulaire, CHU and CIC Inserm 1402, Poitiers Cedex, France; Department of Hematology, Ankara University, Ankara, Turkey; Department of Internal Medicine, Hematology and Oncology, University Hospital Bmo, Bmo, Czech Republic; Department of Hemato-Oncology, University Hospital Ostrava and Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Shengjing Hospital of China Medical University (Huaxiang Br), Shenyang, China; Department of Hemato-Oncology, University Hospital Hospital Olomouc, Czech Republic; Department of Hematology, University Hospital Hospital Hospital Hospital Hospital Hospital Hospital In Prague, Prague, Czech Republic; SP Botkin Moscow City Clinical Hospital, Moscow, Russia; HRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Department of Hematology, University of California at San Francisco, San Francisco, California, USA; Department of Hematology, University Hospital Center of Lille, Lille, France; Sanofi, R&D, Vitry-sur-Seine, France; Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

PRESENTED BY: Thierry Facon, MD

Disclaimer

- Presented at the American Society of Clinical Oncology (ASCO), taking place onsite in Chicago, IL, USA, May 31–June 4, 2024
- Some information may not be consistent with the approved product labeling for the products(s) being discussed; this
 information may relate to the indication or use, dosage and administration, patient population, combination use, or other
 potential unapproved uses. No conclusions regarding safety and efficacy can be made for such uses

Background


- Bortezomib-lenalidomide-dexamethasone (VRd) is a standard frontline treatment for transplant-eligible and -ineligible patients,^{1,2} and is commonly used in clinical practice¹
- Phase 3 studies have shown improved outcomes with quadruplet regimens consisting of an anti-CD38 in combination
 with PI and IMiD agents for transplant-eligible patients with NDMM, reinforcing quadruplet therapies as the standard of
 care³⁻⁶
- Results of a Phase 1b study of isatuximab combined with VRd (Isa-VRd) showed a well-tolerated safety profile, preliminary clinical activity, and deep responses in transplant-ineligible patients or those with no immediate intent for autologous stem cell transplant⁷
- We report the results of a prespecified interim analysis of IMROZ (NCT03319667), the first global Phase 3 study investigating the efficacy and safety of Isa-VRd vs VRd in transplant-ineligible patients with NDMM

ASCO 2024 Abstract 7500

IMiD, immunomodulatory drug; PI, proteasome inhibitor

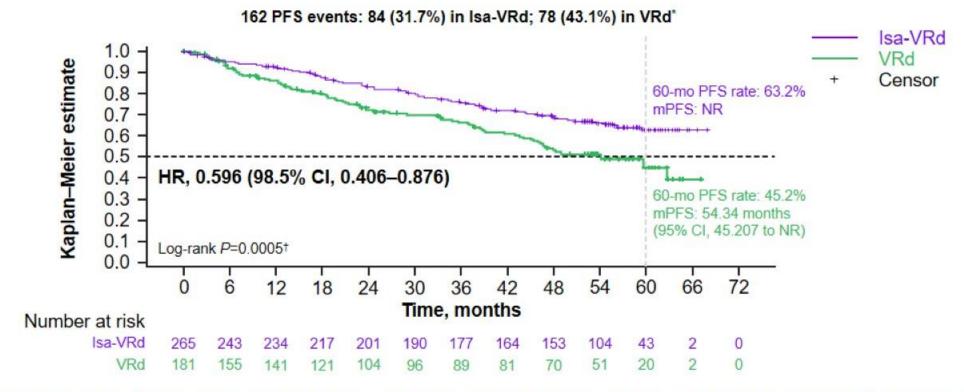
1. Dimopoulos MA, et al. Ann Oncol. 2021;32:309–322. 2. Durie BGM, et al. Lancet. 2017;389:519–527. 3. Gay F, et al. Blood. 2023;142:4. 4. Goldschmidt H, et al. Lancet Haematol. 2022;9:e810–e821. 5. Sonneveld P, et al. N Engl J Med. 2024;390:301–313. 6. Moreau P, et al. Lancet. 2019;394:29–38. 7. Ocio EM, et al. Leukemia. 2023;37:1521–1529.

Study design: Isa-VRd vs VRd in transplant-ineligible NDMM

C, cycle; d, dexamethasone; Isa, isatuximab; R, lenalidomide; SC, subcutaneous; V, bortezomib. Orlowski RZ, et al. ASCO 2018.

Baseline characteristics

ITT population	Isa-VRd (n=265)	VRd (n=181)
Age, median (range), years	72.0 (60–80)	72.0 (55–80)
Age by category, years, n (%)		
<65	8 (3.0)	9 (5.0)
65–<70	73 (27.5)	47 (26.0)
70–<75	115 (43.4)	68 (37.6)
75–80	69 (26.0)	57 (31.5)
ECOG PS, n (%)		
0	123 (46.4)	79 (43.6)
1	112 (42.3)	83 (45.9)
2*	29 (10.9)	19 (10.5)
eGFR <60 mL/min/1.73 m² (MDRD), n (%)	66 (24.9)	62 (34.3)


ITT population	Isa-VRd (n=265)	VRd (n=181)
R-ISS stage (IRT strata), n (%)		
I or II	234 (88.3)	157 (86.7)
III	29 (10.9)	21 (11.6)
Not classified	2 (0.8)	3 (1.7)
Cytogenetic risk, n (%)		
Standard	207 (78.1)	140 (77.3)
Hight	40 (15.1)	34 (18.8)
High and 1q21+‡	19 (7.2)	15 (8.3)
1q21+/amplification 1q21, [§] n (%)	95 (35.8)/ 32 (12.1)	70 (38.7)/ 23 (12.7)
Del(17p) (50% cutoff), n (%)	15 (5.7)	9 (5.0)
Extramedullary disease at study entry¶ (per IRC), n (%)	18 (6.8)	6 (3.3)

Patient characteristics were balanced in both arms

One patient in the Isa-VRd arm had an ECOG PS of 3. *High risk defined as the presence of del(17p) and/or t(4;14) and/or t(14;16), with cutoffs defined in footnote *. *Abnormality defined as present in at least 30% of abnormal bone marrow plasma cells for t(4;14) and t(14;16) and 1q21+ (at least 3 copies), and at least 50% of abnormal plasma cells for del(17p). Only one patient had 2 high-risk cytogenetic abnormalities: del(17p) and t(4;14). §1q21+ defined as at least 3 copies of 1q21. Amplification 1q21 defined as at least 4 copies of 1q21. In addition, there were 67 (25.3%; Isa-VRd) and 49 (27.1%; VRd) patients with paramedullary disease and 1 patient in each group with both extramedullary and paramedullary disease.

IRC, independent review committee; IRT, interactive response technology.

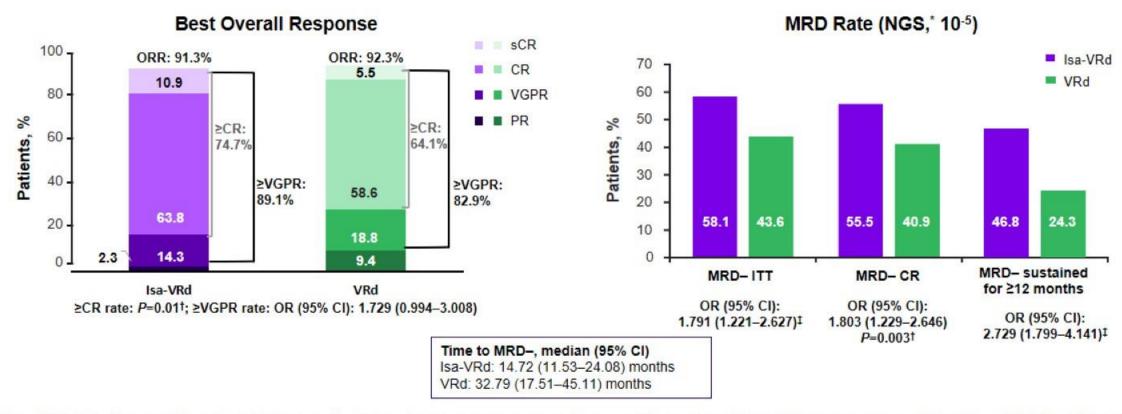
Primary endpoint met: Interim PFS analysis-IRC assessment in ITT population

At a median follow-up of 5 years (59.7 months), Isa-VRd followed by Isa-Rd led to a statistically significant reduction in the risk of progression or death by 40.4%

'Cutoff date for PFS analysis: September 26, 2023 (median follow-up, ~5 years). †Nominal one-sided P value. NR. not reached.

PFS subgroup analyses

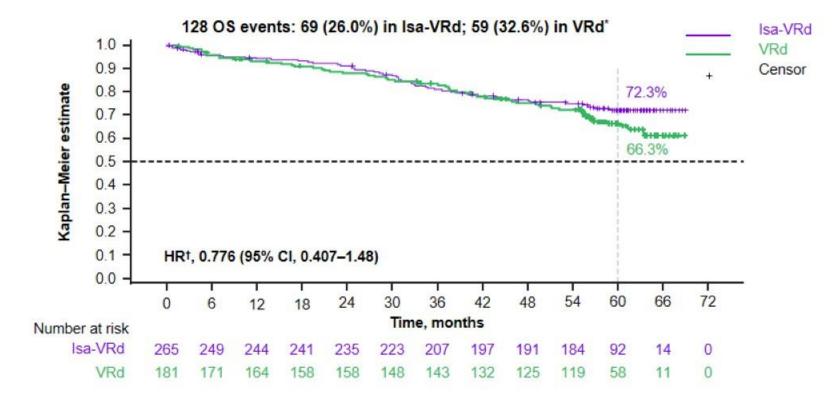
		_	Isa-VRd	Median PFS	VRd	Median PFS		Hazard ratio
Character	ristic	Subgroup	Events/total	(95% CI)	Events/total	(95% CI)		(95% CI)
All patien	its		84/265	NR (NR-NR)	78/181	54.341 (45.207-NR)	⊢	0.596 (0.438-0.812
	70	<70 years	22/80	NR (NR-NR)	27/56	53.914 (37.52-NR)	⊢	0.441 (0.251-0.775
	70-year threshold:	≥70 years	62/185	NR (NR-NR)	51/125	54.341 (43.598-NR)	├	0.671 (0.463-0.972
Age*		<65 years	1/8	NR (48.066-NR)	5/9	31.524 (12.189-NR)	H	0.126 (0.014-1.095
-	Multiple subgroups:	65-<70 years	21/73	NR (NR-NR)	22/47	59.663 (37.52-NR)	—	0.503 (0.276-0.915
	wutipic subgroups.	70-<75 years	39/115	NR (56.214-NR)	25/68	NR (45.207-NR)	—	0.781 (0.472-1.291
		75-80 years	23/69	NR (53.06-NR)	26/57	45.864 (23.819-NR)	├	0.582 (0.331-1.02)
	FCOC BS	0 or 1	74/235	NR (NR-NR)	69/162	54.341 (45.864-NR)	H	0.589 (0.424-0.818
aseline	ECOG PS	>1	10/30	NR (29.503-NR)	9/19	43.598 (5.29-NR)	1	0.606 (0.246-1.493
	<60 mL		25/66	NR (48.066-NR)	31/62	43.598 (33.117-NR)	H	0.63 (0.371-1.068)
aseline (eGFR (MDRD)	≥60 mL/min/1.73 m ²	59/197	NR (NR-NR)	47/119	59.663 (46.62-NR)	⊢• ──	0.604 (0.412-0.887
xtramed	Iullary disease	Yes	6/19	NR (35.91-NR)	5/7	17.873 (2.825-NR)	H	0.174 (0.045-0.666
t baselin	(C)	No	78/246	NR (NR-NR)	73/174	59.663 (46.16-NR)	—	0.618 (0.449-0.851
	- Ale 2002	l or II	67/234	NR (NR-NR)	65/157	59.663 (46.62-NR)	⊢• →	0.551 (0.391-0.776
-ISS stag	ge at study entry	III	16/29	45.602 (21.027-NR)	12/21	37.52 (4.6-NR)	—	0.736 (0.347-1.561
	ala alaba a basadha a	High	18/40	NR (30.259-NR)	14/34	NR (37.454-NR)	1 4	0.971 (0.481-1.96)
ytogene	tic risk at baseline	Standard	61/207	NR (NR-NR)	62/140	53.914 (43.006-NR)	——	0.517 (0.363-0.737
HRCA [†] and 1q21+ [‡]		Yes	8/19	NR (22.998-NR)	9/15	37.52 (5.782-NR)	1	0.491 (0.187-1.293
		No	70/227	NR (NR-NR)	65/157	59.696 (45.864-NR)	⊢ •	0.604 (0.431-0.847
			100		17.		0.0 0.5 1.0 1.5	20
						,	■ Isa-VRd better VRd better —	2.0


A PFS benefit was observed with Isa-VRd vs VRd across most subgroups, including some difficult-to-treat populations with negative prognostic factors

'Age subgroups <70 and ≥70 years based on the randomization stratum as recorded based on interactive response technology. One patient in the Isa-VRd group stratified in the ≥70 category was 69 years old. Age subgroups <65, 65-<70, 70-<75, and 75-80 years based on age per the CRF. *Defined as del(17p) and/or t(4;14) and/or t(14;16). *1q21+ abnormality defined as at least 3 copies of 1q21.

HRCA. high-risk cytogenetic abnormality; MDRD, modification of diet in renal disease; NR, not reached.

ASCO 2024 Abstract 7500


Depth of response in ITT population

Isa-VRd followed by Isa-Rd resulted in deep response rates, with a significant improvement in the MRD– CR rate, as well as higher rates of MRD– and sustained MRD– for ≥12 months

'Adaptive Biotechnologies clonoSEQ®, "Stratified Cochran-Mantel-Haenszel test, Two-sided significance level is 0.025, *P value not reported; not a key secondary endpoint, MRD—, minimal residual disease negativity.

Interim OS analysis in ITT population

At a median follow-up of 5 years, OS is still immature; however, a favorable trend was observed for the Isa-VRd arm, with a 22.4% risk reduction compared with the VRd arm

Safety summary (Safety population) (1/2)

TEAE overview, n (%)	Isa-VRd (n=263)	VRd (n=181)
Median treatment duration	53.2 months	31.3 months
Patients still on treatment	125 (47.2)	44 (24.3)
Any TEAE	262 (99.6)	178 (98.3)
Grade ≥3 TEAEs	241 (91.6)	152 (84.0)
Grade 5 TEAEs*	29 (11.0)	10 (5.5)
Serious TEAEs	186 (70.7)	122 (67.4)
Any TEAE leading to definitive treatment discontinuation	60 (22.8)	47 (26.0)
Event rate per patient-year†		
Any TEAE	13.39	12.69
Grade ≥3 TEAEs	1.17	0.99
Grade 5 TEAEs	0.03	0.02
Serious TEAEs	0.37	0.43
Any TEAE leading to definitive treatment discontinuation	0.07	0.09

The exposure-adjusted incidence rates suggest the difference in incidence of grade 5 TEAEs between arms was largely driven by the difference in treatment exposure ASCO 2024 Abstract 7500

Causes of death occurring during the treatment period for the Isa-VRd group included COVID-19 pneumonia (n=1), COVID-19 pneumonia/multiorgan failure (n=1), renal tubular acidosis/TLS (n=1), septic shock (n=1), pneumonia (n=4), sudden death (n=4), undetermined (n=1), pneumonia pseudomonal (n=1), candida sepsis (n=1), hepatic cirrhosis (n=1), neuroendocrine carcinoma of the skin (n=1), pulmonary embolism (n=1), febrile neutropenia (n=1), pneumonia klebsiella and sepsis (n=1), respiratory failure (n=1), and sepsis (n=1). Causes of death occurring during the treatment period for the VRd group included pneumonia (n=2), COVID-19 (n=2), pneumonia aspiration (n=1), undetermined (n=1), pulmonary embolism (n=1), pleural effusion (n=1), and bronchitis (n=1). Calculated as number of patients with an event divided by total patient-years.

Safety summary (Safety population) (2/2)

		Isa-VRd (n=263)		VRd (n=181)	
Preferred term, n (%)	Any grade	Grade ≥3	Any grade	Grade ≥3	
Hematologic laboratory abnormalities					
Neutropenia	230 (87.5)	143 (54.4)	145 (80.1)	67 (37.0)	
Nonhematologic adverse events					
Infections	240 (91.3)	118 (44.9)	157 (86.7)	69 (38.1)	
Pneumonia	79 (30.0)	53 (20.2)	35 (19.3)	23 (12.7)	
Upper respiratory tract infection	90 (34.2)	2 (0.8)	61 (33.7)	2 (1.1)	
Diarrhea	144 (54.8)	20 (7.6)	88 (48.6)	15 (8.3)	
Peripheral sensory neuropathy	143 (54.4)	19 (7.2)	110 (60.8)	11 (6.1)	
Cataract	100 (38.0)	41 (15.6)	46 (25.4)	20 (11.0)	
Invasive second primary malignancies					
Solid tumors	22 (8.4)	14 (5.3)	8 (4.4)	6 (3.3)	
Hematologic	3 (1.1)	1 (0.4)	2 (1.1)	2 (1.1)	
Event rate per patient-year*			7/1 1):		
Infections	1.181	(=	1.166	-	
Secondary primary malignancies [†]	0.041	-	0.026	-	

Isa-VRd was well tolerated, and the safety profile remains consistent with the known safety profiles of each agent

ASCO 2024 Abstract 7500

'Calculated as number of patients with an event divided by total patient-years. Patients were followed yearly. Including non-melanoma skin cancer.

Summary

- IMROZ is the first global Phase 3 study of an anti-CD38 mAb in combination with VRd in patients with transplant-ineligible NDMM
- Isa-VRd followed by Isa-Rd led to a statistically significant reduction in the risk of progression or death by 40.4% (mPFS NR [Isa-VRd] vs 54.34 months [VRd]; HR, 0.596), highlighting an outstanding PFS benefit in patients with transplant-ineligible NDMM
- Isa-VRd resulted in deep response rates vs VRd, with a statistically significant improvement in the MRD– (NGS, 10-5)
 CR as well as higher rates of MRD– and almost double sustained MRD– for ≥12 months
- Although OS is still immature, a trend in favor of Isa-VRd was also observed
- Isa-VRd was well tolerated, and the safety profile remains consistent with that of each agent

The improved efficacy of Isa-VRd followed by Isa-Rd, combined with a consistent safety profile, provides an important treatment option for frontline disease control, establishing Isa-VRd as a new SOC for patients aged ≤80 years with transplant-ineligible NDMM

▶ DREAMM-7 is a phase 3 study examining a belantamab mafodotin-based combination at first relapse in MM (NCT04246047)

Recruitment period ~13-month from FPI (May 7, 2020) to LPI (June 28, 2021)

Eligibility criteria

- · Adults with MM
- ≥1 prior line of MM therapy, and documented PD during or after their most recent therapy
- No prior treatment with anti-BCMA
- Not refractory or intolerant to daratumumab or bortezomib

1:1 Randomization

(BVd)

⋖

Arm

(DVd)

 $\mathbf{\omega}$

Treatment period

Until end of study, withdrawal of consent, disease progression, death or unacceptable toxicity

Cycle 1-8 Belantamab mafodotin IV 2.5 mg/kg Q3W + Bortezomib 1.3 mg/m² SC on days 1,4,8, and 11 of cycle 1-8 (21-day cycle)

Dexamethasone 20 mg^a on the day of, and day after bortezomib for cycles 1-8

Daratumumab IV 16 mg/kg cycle 1-3; Q1W and cycle 4-8; Q3W

Bortezomib 1.3 mg/m² SC on days 1,4,8, and 11 of cycle 1-8 (21-day cycle)

Dexamethasone 20 mga on the day of, and day after bortezomib for cycles 1-8

i onom up po

Belantamab mafodotin monotherapy IV 2.5 mg/kg Q3W

Cycle 9+

Daratumumab monotherapy IV 16 mg/kg Q4W

Follow-up for PFS Q3W (for patients who discontinue due to reasons

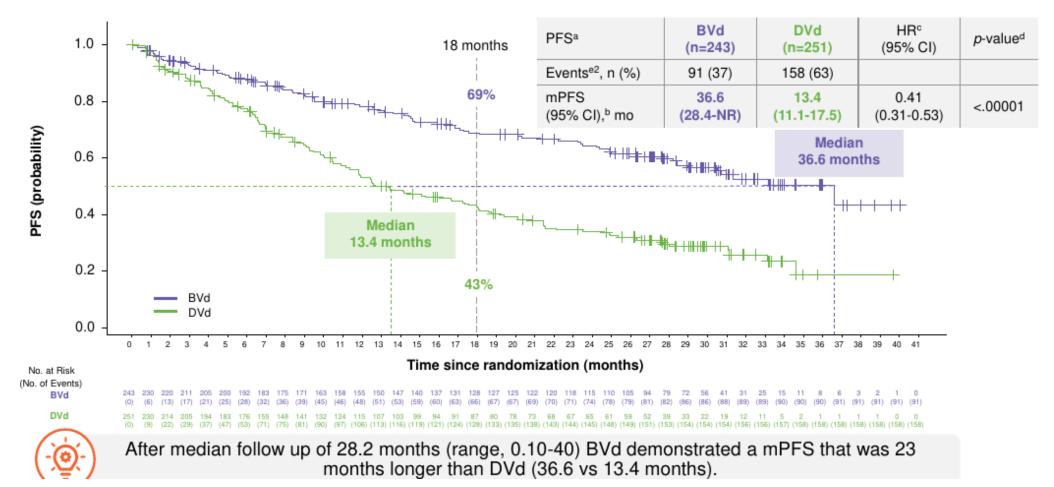
other than PD) Disease assessments Q3W

Follow-up period

Follow-up for OS Q12W (for patients who discontinue due to PD, or other reasons)

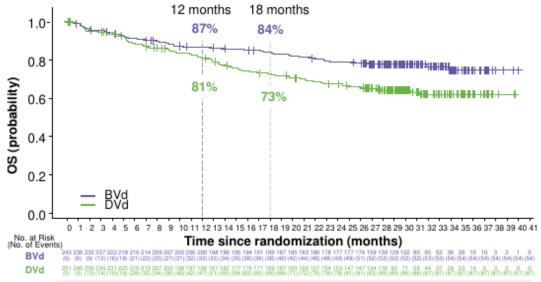
_

Stratification:


- Prior lines of treatment (1 vs 2 or 3 vs ≥4)
- · R-ISS (I vs II/III)
- · Prior bortezomib (yes vs no)

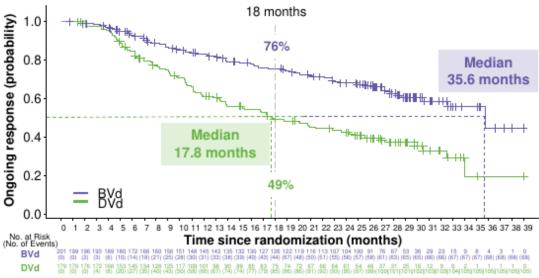
Disease assessment visits: Q3W from cycle 1 day 1 until disease progression

- Primary endpoint: PFS
- Key secondary endpoints: OS, DOR, MRD
- Additional secondary endpoints: CRR, ORR, CBR, TTR, TTP, PFS2, AEs, Ocular findings, QOL


End of treatment visit

DREAMM-7: BVd time to disease progression or death vs DVd1

DREAMM-7: OS and DOR data - BVd vs DVd²


OSª	BVd (n=243)	DVd (n=251)	HR° (95% CI)	p-value ^d
Events, n (%)	54 (22)	87 (35)		
mOS (95% CI),b mo	NR	NR	0.57 (0.4-0.8)	.00049e

Although data is immature, OS showed a trend favoring the BVd arm; additional OS follow-up is ongoing

DORª	BVd (n=201)	DVd (n=179)
Events, n (%)	68 (34)	105 (59)
Patients with ongoing response	106 (53)	52 (29)
mDOR (95% CI),b mo	35.6 (30.5-NR)	17.8 (13.8-23.6)

BVd median DOR 35.6 vs DVd 17.8 months.

A separate analysis of restricted mean DOR comparing DOR between arms showed a statistically significant benefit in favor of BVd (p<.00001).¹¹

DREAMM-7: Safety Overview

n (%)	BVd (N=242)	DVd (N=246)
Any AE	242 (100)	246 (100)
AEs related to any study treatment ^a	242 (100)	234 (95)
Grade 3/4 AE	229 (95)	187 (76)
Exposure adjusted, events/person-years ^b	68.8	62.4
Related to any study treatment ^a	219 (90)	164 (67)
AEs leading to permanent discontinuation of any study treatment	75 (31)	46 (19)
Exposure adjusted, events/person-years ^b	22.5	15.4
AEs related to any study treatment leading to permanent discontinuation of any study treatment ^a	64 (26)	36 (15)
AEs leading to dose reduction	182 (75)	146 (59)
AEs leading to dose interruption/delay	228 (94)	185 (75)
Any SAE	121 (50)	90 (37)
Exposure adjusted, events/person-years ^b	36.3	30.0
Related to any study treatment ^a	47 (19)	30 (12)
Fatal SAEs	23 (10)	19 (8)
Fatal SAEs related to any study treatment ^a	7 (3)	2 (<1)

DREAMM-7: Ocular AEs (CTCAE)¹

Grade ≥3 ocular events (CTCAE) in ≥5% of patients in either treatment group by preferred term and maximum grade

Ocular AESIs (by CTCAE) preferred terms, n (%)	BVd ⁻ (N=242)		DVd (N=246)	
	All Grades	Grade ≥3	All Grades	Grade ≥3
Any Event	191 (79)	82 (34)	72 (29)	7 (3)
Vision blurred	160 (66)	53 (22)	26 (11)	2 (<1)
Dry eye	123 (51)	17 (7)	17 (7)	0
Eye irritation	103 (43)	12 (5)	13 (5)	0
Visual impairment	26 (11)	13 (5)	4 (2)	1 (<1)

Ocular exams for patients in the BVd arm were assessed at screening/baseline and then every 3 weeks prior to dosing up to at least the 6th dose of belantamab mafodotin and then every three months if there were no significant ocular findings. For patients in the DVd arm, ocular exams were performed at screening/baseline with on treatment ocular exams performed at cycle 6 and then decreased to every 6 months.

The keratopathy and visual acuity (KVA) scale incorporates corneal examination findings (via slit lamp examination) and changes in best corrected visual acuity (BCVA) into a composite grade. The KVA scale was not initially utilized in DREAMM-7 and was introduced post-protocol amendment. Ocular events per overall KVA scale were 84% in the BVd arm.²

Thank you!