LV Dysfunction and Heart Failure Prior To, During and After Cancer Therapy

Richard Cheng, MD, MSc Division of Cardiology and Radiology University of Washington, Seattle ACC Governor, Washington State Chapter @RichardKCheng2

Objectives

- Review the data for cardioprotection during cancer treatment
- Discuss the concept of permissive cardiotoxicity
- Provide a snapshot of long-term concern in cancer survivors

Pubmed entries: CVD + Cancer

Year

ICOS 2021 Consensus for CTCRD

Asymptomatic CTRCD (with or without additional biomarkers, LVEF values are based on 2D echo) $Mild = .VEF \ge 50\% = .AND new relative decline in GLS by >15\% from baseline = .AND/OR new rise in cardiac biomarkers$	 Moderate New LVEF reduction by ≥10% to an LVEF of 40-49% New LVEF reduction by <10% to an LVEF of 40-49% AND new relative decline in GLS by >15% from baseline AND/OR new rise in cardiac biomarkers 	Severe •New LVEF reduction to <40%
---	--	--

Symptomatic CTRCD (with LVEF and supportive diagnostic biomarkers)	Mild •Mild HF symptoms, no intensification of therapy required	Moderate •Need for Outpatient intensification of diuretic and HF therapy	Severe •HF Hospitalization	Very Severe •Requiring inotropic support, mechanical circulatory support or consideration for transplantation
---	--	---	-------------------------------	---

HF Considerations in Cardio-oncology

Pre-Treatment

During Treatment

After Treatment

Table 28. Cancer Therapies Known to Be Associated With Cardiomyopathy

	Cardiac Function M Performed in Clini		Aonitoring Often cal Practice	
Class	Agent(s)	Pretherapy	Serial	
Anthracyclines 55-57	Doxorubicin, epirubicin	x	x	
Alkylating agents58-60	Cyclophosphamide, ifosfamide, melphalan	x		
Antimicrotubule agents.61,62	Docetaxel			
Antimetabolites63-72	Fluorouracil, capecitabine, fludarabine, decitabine			
Anti-HER2 agents73-76	Trastuzumab, pertuzumab	x	x	
Monoclonal antibodies77	Rituximab			
Tyrosine-kinase inhibitors78-100	Dabrafenib, dasatinib, lapatinib, pazopanib, ponatinib, sorafenib, trametinib, sunitinib, vandetanib, imatinib, vandetanib			
Immune checkpoint inhibitors ^{39,40,101}	Nivolumab, ipilimumab, pembrolizumab			
Protease inhibitors ^{102–106}	Bortezomib, carfilzomib			
Endocrine therapy ¹⁰⁷⁻¹¹¹	Goserelin, leuprolide, flutamide, bicalutamide, nilutamide			
Chimeric antigen receptor T-cell therapy.112,113	Tisagenlecleucel, axicabtagene ciloleucel	x		
Hematopoietic stem cell transplantation7,44,114-119	Hematopoietic stem cell transplantation	x		
Radiation ^{7,44,114–119}	Chest			

Who/When to refer

 Table 4
 Heart Failure Association–International Cardio-Oncology Society baseline cardio

 stratification

Baseline CV toxicity risk factors	Anthracycline chemotherapy	HER2-targeted therapies	VEGF inhibitors	BCR-ABL inhibitors	Mı my therapies	inhibitors			
Previous CVD									
HF/cardiomyopathy/ CTRCD	VH	VH	VH	н	VH	VH			
Severe VHD	Н	Н	-	-	-	Н			
MI or PCI or CABG	Н	Н	VH	-	-	Н			
Stable angina	Н	Н	VH	-	-	Н			
Arterial vascular disease	-	-	VH	VH	VH	-			
Abnormal ankle-brachial pressure index	-	-	-	н	-	-			
PH	-	-	-	н	-	-			
Arterial thrombosis with TKI	-	-	-	VH	-	-			
Venous thrombosis (DVT/PE)	-	-	н	M2	VH	-			
Arrhythmiaª	-	M2	M2	M2	M2	M1			
$QTc \ge 480 \text{ ms}$	-	-	н	Н	-	-			
$450 \le QTc < 480 ms (men);$ $460 \le QTc < 480 ms$ (women)	-	-	M2	M2	-	-			
Prior PI CV toxicity	-	-	-	-	VH	-			
Prior IMiD CV toxicity	-	-	-	-	н	-			
Cardiac imaging									
LVEF < 50%	Н	Н	н	Н	н	Н			

B-NR

1

2022 ESC Guidelines on cardio-oncology 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure

In patients who develop cancer therapy-related cardiomyopathy or HF, a multidisciplinary discussion involving the patient about the riskbenefit ratio of cancer therapy interruption, discontinuation, or continuation is recommended to improve management.^{1,2}

Case #1

- 46 year old woman without PMH diagnosed with Rsided IDC and DCIS, ER/PR neg, HER2 pos
- Planning for ddAC x4 cycles, then THP

Questions for the Panel

- 1) Would you recommend starting this patient on cardioprotection?
- 2) If yes, what would you start her on?

Recent RCT of cardioprotection during anthracycline therapy

Trial	Trial Design	Trial Intervention	Imaging Method	Ν	Result of Primary Endpoint and Follow-Up Results	Result of Key Secondary Endpoints and Follow-Up Results
Pharmacolo	ogic intervention					
	Randomized Placebo- controlled Double-blind 2 × 2 factorial	Metoprolol Candesartan / Metoprolol plus candesartan / Placebo	CMR	130 BC undergoing AC +/- Tras +/- RT	<u>Primary trial</u> : candesartan attenuated the reduction in LVEF <u>Follow-up</u> (median 23 mo): no difference in change in LVEF from baseline to extended follow-up in either treatment arm	Primary trial: metoprolol attenuated the rise in troponins Follow-up: no difference in change in troponins from baseline to extended follow-up in either treatment arm

Meta-analysis of NH blockade

- Patients with cancer undergoing chemotherapy
- NH blockade (BB, ACEI/ARB, MRA)
- 17 RCT, 1984 participants

Statins – PREVENT

- 279 participants: Mean age 49 years, 92% women, 83% white
- Stage I-III BC or stage I-IV lymphoma scheduled to receive anthracyclines
- Randomized to atorvastatin 40 mg vs placebo (no indication for statin)
- Median anthracycline dose 240 mg/m2
- Primary endpoint: Difference in 24month LVEF between groups by CMR

Statins: STOP-CA

- 300 participants: Mean age 50 years, 47% women, 89% white
- Hodgkin or non-Hodgkin lymphoma scheduled to receive anthracyclines
- Randomized to atorvastatin 40 mg vs placebo (no indication for statin)
- Median anthracycline dose 300 mg/m2
- Primary endpoint: Proportion with decline in LVEF ≥10% to <55%

Not available
Met criteria for cardiac dysfunction
Did not meet criteria for cardiac dysfunction

Do we need to target cardioprotection?

	PREVENT	STOP-CA
Age (mean)	49 years	50 years
Cancertype	85.6% Breast cancer 14.4% Lymphoma	Lymphoma
Anthracycline dose (median)	240 mg/m2	300 mg/m2
Primary endpoint	Difference in 24-month LVEF between placebo and treatment groups	Proportion of participants with an absolute decline in LVEF ≥10% from prior to chemo to <55% at 12 months

Meta-analysis of dexrazoxane in BC

CENTRAL ILLUSTRATION Dexrazoxane in Breast Cancer Patients Under Anthracycline-Based Chemotherapy

Case #1

- s/p ddAC x4 cycles, then THP with drop in LVEF from baseline of 56% down to <u>LVEF of 38%</u>
- Completely asymptomatic

Questions for the Panel

- 1) What do you recommend doing with the HER2 directed therapy?
- 2) Would you start her on HF meds?

HF Considerations in Cardio-oncology

Pre-Treatment

During Treatment

After Treatment

Permissive Cardiotoxicity

Porter C et al. JACC CardioOncol 2022 Sep 20

Permissive Cardiotoxicity

- HER2 directed therapy: LV dysfunction
- Anthracyclines: Asymptomatic decline in LVEF
- VEGF inhibitors: HTN and HF
- ICI's: Low grade myocarditis

Dose interruption of trastuzumab

- 1396 HER2 positive BC at MSKCC from 2004-2013
- 13% had treatment interruption (67% for cardiotoxicity)
- Median follow-up of 6.0 years
- Dose interruption associated with higher rates of BC recurrence and death

Figure. Kaplan-Meier Plot of Recurrence-Free Survival According to Continuous vs Interrupted Trastuzumab

TABLE 5 Safety mats for mastuzumabili Left ventricular Ejection Fraction is Reduced							
Trial	Trial Inclusion	Trial Intervention	Imaging Method	N	Primary Endpoint	Results	
SAFE-HEART ⁴⁹	LVEF 40%-49% prior to study participation Stage I-IV HER2+ BC and candidates for HER2 directed therapies	Carvedilol and any angiotensin antagonist	Echocardiography	30	 Patients completed planned HER2-targeted therapy without developing Asymptomatic decline in LVEF of >10% from baseline and/or LVEF ≤35% or Cardiac event, defined as Symptomatic heart failure Cardiac arrhythmia Requiring intervention Myocardial infarction Sudden cardiac death 	 27 (90%) completed HER2- targeted therapies. 2 developed symptomatic heart failure 1 had asymptomatic LVEF decline to 32% 	
SCHOLAR ⁵⁰	LVEF 40%-54% or LVEF >54% and an absolute fall in LVEF of ≥15% from baseline Phase I, single arm study of Stage I-III HER2+BC on trastuzumab	Angiotensin-converting enzyme inhibitor and beta-blocker	Echocardiography	20	 Cardiac dose-limiting toxicity, defined as Occurrence of any of the following Cardiovascular death LVEF <40% together with any heart failure symptoms LVEF <35% 	2 developed cardiac dose- limiting toxicity	

E. Safety Trials for Tracturymah if Loft Ventricular Election Eraction Is Deduced

SAFE-HEaRt = Cardiac Safety Study in Patients With HER2 + Breast Cancer; SCHOLAR = Safety of Continuing Chemotherapy in Overt Left Ventricular Dysfunction Using Antibodies to HER-2; other abbreviations as in Tables 1 and 3.

Table modified from: Omland et al. JACC:CardioOnc 2022 Mar Leong DP et al. JACC CardioOncol 2019 Jul 17; 1(1)

Case #1: Treatment exposure

Cardiac Imaging	
MUGA baseline: LVEF 56%	Baseline; ddAC x4 cycles
MUGA post-AC: LVEF 56-59%	Taxol Trastuzumab/Pertuzumab
MUGA: LVEF 50-52%	RT (Proton therapy)
MUGA: LVEF 38-39%	Started ACEi and BB
Echo: LVEF 38%, GLS -12%	Held Trastuzumab/Pertuzumab
CMR after 1 month: LVEF 36%	Increased ACEi and BB, added MRA

Questions for the panel

LVEF improves to 43%:

1) What would you do next regarding the HER2 directed therapy?

Case #1

- Repeat echo LVEF 43%, GLS -15.2%
- Continued HF GDMT, restarted HER2 directed therapy
- Completed treatment without clinical HF
- Post-treatment LVEF improved to 58%, GLS -18.2%

⋰⋌

Modified from: 2022 AHA/ACC/HFSA Heart Failure Guideline

CV Medications in Patients with Cancer

TABLE 1 Patient Characteristics				
	All Patients (N = 320)	Patients Without History of Cancer (n = 251)	Patients With History of Cancer (n = 69)	p Value*
Age, yrs	$\textbf{65.3} \pm \textbf{13.3}$	64.5 ± 13.4	68.2 ± 12.5	0.039
Male	207 (62.3)	163 (64.9)	38 (55.1)	0.160
BMI, kg/m ²	$\textbf{29.4} \pm \textbf{6.9}$	$\textbf{29.3} \pm \textbf{6.4}$	$\textbf{30.0} \pm \textbf{8.5}$	0.444
Primary reason for admission				
ACS/CHD	218 (68.1)	178 (70.9)	40 (58.0)	0.057
Heart failure	61 (19.1)	40 (15.9)	21 (30.4)	0.009
Atrial fibrillation	9 (2.8)	6 (2.4)	3 (4.3)	0.411
Other	32 (10.0)	27 (10.8)	5 (7.2)	0.500
Past medical history				
Ischemic heart disease	287 (89.7)	227 (90.4)	61 (88.4)	0.396
Hypertension	148 (46.3)	112 (44.6)	36 (52.2)	0.278
Dyslipidemia	94 (29.4)	74 (29.5)	20 (29.0)	1.000
Diabetes	82 (25.6)	64 (25.5)	18 (26.1)	0.676
Heart failure	72 (22.5)	71 (28.3)	24 (34.8)	0.049
Atrial fibrillation	58 (18.1)	39 (15.5)	19 (27.5)	0.033
Stroke	31 (9.7)	23 (9.2)	9 (13.0)	0.611
Cardiovascular medication use				
Statins	244 (76.3)	200 (79.7)	44 (63.8)	0.010
ACE inhibitor/ARB	192 (60.0)	154 (61.4)	38 (55.1)	0.405
β-blockers	219 (68.4)	176 (70.1)	43 (62.3)	0.243
Antiplatelets	229 (71.6)	189 (75.3)	40 (58.0)	0.007
DOAC	47 (14.7)	36 (14.3)	11 (15.9)	0.705

Single center

- 333 patientsadmitted between2018-2019 at JohnHunter Hospital
- Included patients with indication for cardioprotective medications

Singh JP et al. JAMA 2019 Nov 12

CRT in cardio-oncology patients

MADIT-CHIC study

- Prospective, cohort study of chemo-induced CMY
- Class I or II indication for CRT: LVEF ≤35%, NYHA II-IV and wide QRS (mean 152 ms)
- Enrolled 30, data on 26
- 73% breast cancer and 20% lymphoma/leukemia

HF Considerations in Cardio-oncology

Pre-Treatment

During Treatment

After Treatment

Prevalence of cardiac dysfunction in adult 10-year survivors of childhood cancer

Risk for HF in breast cancer survivors

Retrospective study

- Women's Health Initiative
- 2,272 postmenopausal BC survivors followed for physician adjudicated incident HF req admission
- 64.9% White, 28.6% Black
- Median follow-up 7.2 years

Risk for HF

- HFpEF 6.7%, HFrEF 4.0% at 7.2 years of follow-up
- Overall mortality compared to those without HF: HFpEF HR 5.7 HFrEF HR 3.8

Heart	Failure with Prese	ved Ejecti	on Fraction		0
Multivariable Adjusted Models		Hazard Rat	tio (95% CI)		A
Age at cancer diagnosis	1.55 (1.31–1.82)				11 \
Ever smoked	1.72 (1.06–2.77)				
Waist circumference ≥ 88 cm	1.93 (1.12–3.34)		+ •		6
Hypertension	1.62 (0.82-3.21)		•	-	
Diabetes	1.59 (0.91–2.77)	F	• •		
Myocardial infarction	2.84 (1.28–6.29)		I	•	-1
Hear	Decr t Failure with Redu	eased risk ced Ejectic	Increased risk		
Multivariable Adjusted Models		Hazard Rat	tio (95% CI)		
Age at cancer diagnosis	1.10 (0.90–1.35)	F	•		
Ever smoked	1.52 (0.82–2.81)	-	•	1	
Waist circumference ≥ 88 cm	1.13 (0.59–2.17)		•		
Hypertension	2.12 (0.87-5.15)	F	•		-
Diabetes	1.71 (0.82–3.55)	-	•		
Myocardial infarction	2.34 (0.71–7.71)		•		
		0.54	1.46	3.94	
		the second second	a second second		

Balancing "healthy" and "sick" for AHFT

Sick enough to benefit? Common Indications

- End-stage HF
- Advanced RCM
- Refractory severe angina
- Refractory VT

Healthy enough to do well?

Common contraindications

- Active infection
- Current or recent cancer
- Other end-organ dysfunction
- T2DM with end-organ damage
- Pulmonary hypertension
- Psychosocial barriers
- Severe obesity

Is LVAD an option in active cancer?

2 center study (Medstar + UW), 3:1 matching
Cancer cohort: 27% female, 62 yrs

TABLE 2Oncological Characteristics of Patients WMalignancy (N = 22)	ith Active
Type of cancer	
Prostate	5 (23)
Renal	4 (18)
Hematologic malignancy	3 (14)
Breast	2 (9)
Lung	2 (9)
Bladder	2 (9)
Neuroendocrine tumor	2 (9)
Other	2 (9)
Median age at cancer diagnosis* (yrs)	61 (41-72)
Goal of therapy	
Curative	13 (59)
Palliative	<mark>6 (</mark> 27)
No therapy	3 (14)
Type of cancer-directed therapyt	
Surgery	12 (55)
Systemic therapy	11 (50)
Radiation	5 (23)

Heart transplant

Ramu B et al. JACC Cardio-Onc 2021;3

Batra J et al. Circ Heart Fail. 2022 Jan 31

Years since HT

Take home points

What we know:

- LV dysfunction is not uncommon with cancer treatment
- We need to identify cardiotoxicity early and accurately
- Permissive cardiotoxicity may be safe in selected instances
- Long-term follow-up is needed as cancer survivors are at risk for HFpEF and HFrEF

What we don't know:

- Optimal cardioprotection strategy:
- What patients should we target?
- What is the optimal regimen?
- Does it prevent clinical endpoints?
- What is the role of AHFT in patients with active or recent cancer?