Health Inequities related to biological and social determinants of health: An Update from SABCS

> Sailaja Kamaraju, MD,MS Associate Professor of Medicine Medical College of Wisconsin Milwaukee, WI

DISCLOSURES

VMO- Oncology T-Bio

Case Presentation

60-year AA female, *BRCA 2* mutation carrier, with a history of right breast cancer. She developed contralateral breast cancer while on AET

SOCIAL DETERMINANTS

- SDOH
- Food, financial, housing insecurities and other domains
- Delays in screening, advanced disease at diagnosis
- Treatment delays
- Treatment denials
- Survivorship issues

BIOLOGICAL DETERMINANTS

- Biology
- Aggressive biologies
- Tumor heterogeneity
- Germline vs. somatic alterations

Geographic area 53206, limited access to transportation, lives alone, morbidly obese

Prevalence of SDOH-Related Issues Stratified by Race

among 30,271 Cancer Registry patients who presented at Moffitt in 2008-2016

*Data related to item-specific difficulties were only available in EPQ versions 2 and 3 for patients who visit MCC between Jul 2008 and Aug 2016 (~27% of the total population).

Unpublished Data, Slide courtesy of Dr. Dana Rollison, Chief Data Officer, Moffitt Cancer Center

Vadaparampil S et al. SABCS, Tuesday [Special Session], 2023

"The clinical care we provide only accounts for about 50% of the health factors that ultimately determine our health outcomes, the other 50% are determined by social determinants of health"

~ Margie Andreae, MD, Michigan Medicine's chief medical officer of billing compliance

Vadaparampil S et al. SABCS, Tuesday [Special Session], 2023

Time to Treatment Matters

This presentation is the intellectual property of the author/presenter. This slide was presented byLia Scott, PhD, MPH, Georgia State University, SABCS 2023, Discussant- Poster Spotlight Session #18, please contact the presenter for

Moving from Assessing to Addressing SDOH

- Leadership buy-in is essential
- Assessing clinician and staff barriers
 - Many find it overwhelming
 - Sharing clinic-wide progress can help increase staff engagement
- Identifying resources and referral systems ahead of time
- Navigators and Community Health Workers play a valuable role in screening and referral
- Not all patients who report social needs request help, but providing assistance to those who do, can change patient outcomes

CLINICIAN AND STAFF ATTITUDES ON SDOH SCREENING

The Association between Food Deserts, Food Swamps, and Postmenopausal Breast Cancer Mortality in the United States

Malcolm S. Bevel, PhD, MSPH; Meng-Han Tsai, PhD, MPH; April Parham, BS; Sydney E. Andrzejak, MS; Samantha R. Jones, PhD; Justin Xavier Moore, PhD, MPH Georgia Cancer Center, Augusta University, Augusta, GA Center for Healthy Equity Transformation, Markey Cancer Center, University of Kentucky College of Medicine

Disclosure Information

I have no other financial relationships or conflicts of interest to disclose. This presentation is the intellectual property of the author/presenter. Contact them at <u>mbevel@augusta.edu</u> for permission to reprint and/or distribute

Session: Poster Spotlight Session 18 [12/8/2023]: Disparate Care Calls for Desperate Measures: Understanding Gaps in Quality of Care and Opportunities to Improve it.

Hypothesis, Objectives and Methods

- Residing in geographical areas with no access to healthy foods (food deserts) or increased unhealthy food options (food swamps) reduces access to healthy foods and has been severely understudied regarding postmenopausal breast cancer (BRCA) mortality.
- Objective: examine the association between residing in food swamps and deserts with postmenopausal BRCA mortality.
- Methods:
 - Cross-sectional/Ecological analysis
 - 2010 2020 Center for Disease Control and Prevention Wonder (postmenopausal BRCA mortality data); aggregated 2012 – 2020 data from the U.S. Department of Agriculture Food Environment Atlas
 - Multilevel generalized mixed effects models

Results

- Among U.S. counties with high postmenopausal BRCA mortality rates:
 - Higher percentage of NH-black population (5.81% vs. 2.08%), poverty rates (17.2% vs. 14.2%), adult obesity rates (32.5% vs. 32.0%), and adult diabetes rates (11.8% vs. 10.5%) (p-value < 0.001).
- Among U.S. counties:
 - Age-adjusted odds of counties having high postmenopausal BrCa mortality was 53% higher among counties with high food desert scores (AOR = 1.53; 95% CI = 1.26 1.88) and over 2-fold times higher among high food swamp scores (AOR = 2.09; 95% CI = 1.69 2.58).
 - In fully adjusted models, the odds of counties having moderate postmenopausal BRCA mortality rates was 32% higher among counties with moderate food swamp scores (AOR

= 1.32; 95% CI = 1.03 – 1.70).

Conclusions/Implications/Next Steps

- U.S. counties or county equivalents with poorer food swamp environments had a significantly greater odds of postmenopausal breast cancer mortality.
- Growing epidemic of food swamps could be due to systemic issues (e.g. gentrification/redlining, lack of true investment with chain grocery stores)
- Implement culturally tailored, sustainable community-garden based interventions for obesity and obesity-related cancer prevention including postmenopausal BRCA among underserved populations.

Refusal of Recommended Cancer Treatments and Overall Survival Differences in Breast Cancer Patients: Analysis of the National Cancer Database

Jincong (Jason) Freeman, MPH, MS¹; James Li, BS^{1,2}; Susan Fisher, MS, PhD³; Katharine Yao, MD³; Sean David, MD, SM, DPhil^{2,3}; Dezheng Huo, MD, PhD^{1,4}

¹ The University of Chicago Department of Public Health Sciences,² The University of Chicago Pritzker School of Medicine; ³ NorthShore University Health System; ⁴ The University of Chicago Center for Clinical Cancer Genetics and Global Health

Disclosure Information: I have no financial relationships to disclose.

Acknowledgements: This study was supported in part by the Breast Cancer Research Foundation (BCRF-20-071), Susan G. Komen® (TREND 21675016), and the NIH/NIA under grant award T32 AG000243 (PI: David Meltzer, MD, PhD). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH/NIA.

This presentation is the intellectual property of the author. Contact them at <u>dhuo@bsd.uchicago.edu</u> for permission to reprint and/or distribute

Session: Poster Spotlight Session 18 [12/8/2023]: Disparate Care Calls for Desperate Measures: Understanding Gaps in Quality of Care and Opportunities to Improve it.

Objectives and Methods

Objectives

- □ To assess the prevalence of treatment refusals and correlated factors in breast cancer patients (pts).
- □ To examine the association between treatment refusal status and overall survival (OS) in breast cancer pts.

Methods

- Data were from the 2004-2020 National Cancer Database (NCDB).
- Four cancer treatment modalities were assessed:
 - Chemotherapy (CT): included stage I-IV pts.
 - Hormone therapy (HT): included stage I-IV, HR+ pts.
 - Radiotherapy (RT): limited to only stage I-III pts.
 - Surgery: limited to only stage I-III pts.
- □ Refusal status was categorized as "administered/refused" and modeled using multivariable logistic regression.
- The association between treatment refusal status and OS was examined using the log-rank test, followed by multivariable Cox proportional hazards regression.

San Antonio Breast Cancer Symposium® | @SABCSSanAntonio

This presentation is the intellectual property of the author/presenter. Contact them at Jincong Freeman <jjfreem@uchicago.edu >for permission to reprint and/or distribute

Results

Overall Prevalence of Treatment Refusals

- In the CT cohort, <u>9.6%</u> of 1,296,488 pts who were offered the treatment refused.
- In the RT cohort, <u>6.1%</u> of 1,635,916 pts refused.
- In the HT cohort, <u>5.0%</u> of 1,893,339 pts refused.
- □ In the surgery cohort, **0.6%** of 2,590,963 pts refused.

Figure. Trends in Treatment Refusals, 2004-2020

DO NOT POST

San Antonio Breast Cancer Symposium[®] | @SABCSSanAntonio

DO NOT POST

This presentation is the intellectual property of the author/presenter. Contact them at Jincong Freeman < jjfreem@uchicago.edu > for permission to reprint and/or distribute

Results, cont'd

Conclusions

Table. Differential OS by Treatment Refusal Status			
	crude HR (95% Cl)	adjusted HR (95% CI)	
СТ			
Administered	1.0 (ref.)	1.0 (ref.)	
Refused	1.81 (1.79-1.83)	1.86 (1.83-1.90) *	
нт			
Administered	1.0 (ref.)	1.0 (ref.)	
Refused	1.68 (1.66-1.70)	1.56 (1.53-1.59) ^b	
RT			
Administered	1.0 (ref.)	1.0 (ref.)	
Refused	2.93 (2.89-2.96)	1.97 (1.93-2.01) *	
Surgery			
Administered	1.0 (ref.)	1.0 (ref.)	
Refused	6.80 (6.65-6.96)	2.91 (2.82-3.01)	
■ A directed for add ra	colothnicity, hoalth incuranco	modion household income type	

^a Adjusted for age, race/ethnicity, health insurance, median household income, type of cancer program, Charlson-Deyo comorbidity score, histology, AJCC stage, molecular subtype, tumor grade, and year of diagnosis.

^b Adjusted for age, race/ethnicity, health insurance, median household income, type of cancer program, Charlson-Deyo comorbidity score, histology, AJCC stage, HER2 status, tumor grade, and year of diagnosis.

- At the national level, the rate of treatment refusal was highest for CT and lowest for surgery, and there were significantly increased trends in treatment refusals from 2004 to 2020.
- Age, race/ethnicity, socioeconomic/care access indicators, AJCC stage, molecular subtype, and tumor grade were independently associated with treatment refusals, suggesting that differential refusals not only are affected by biological factors but also may reflect disparities in socioeconomic status.
- Furthermore, pts who refused treatment experienced worse OS, regardless of treatment modality.
- These findings suggest that stressing the importance of recommended treatment and interventions tailored for this patient population may be needed to improve their survival outcomes.

DO NOT POST

San Antonio Breast Cancer Symposium® | @SABCSSanAntonio

This presentation is the intellectual property of the author/presenter. Contact them at Jincong Freeman < jjfreem@uchicago.edu>for permission to reprint and/or distribute

Bridging Disparities in Survivorship Care: Leveraging Telehealth for Diverse Patients in Safety Net Hospital

Ivan Leung, MS University of California, San Francisco Zuckerberg San Francisco General Hospital San Francisco, CA

> Scan QR code to view & download poster

Disclosure Information

I have no financial relationships to disclose.

This presentation is the intellectual property of the author/presenter. Contact them at ivan.leung@ucsf.edu for permission to reprint and/or distribute

Session: Poster Spotlight Session 18 [12/8/2023]: Disparate Care Calls for Desperate Measures: Understanding Gaps in Quality of Care and Opportunities to Improve it.

Background and Methods

- 67-88% of the 3.8 million breast cancer survivors report unmet needs in survivorship care
- Disparity exacerbated during COVID-19 pandemic

- Single-arm, pilot intervention trial of telehealth Group Medical Visits
 - Six cohorts (2 English, 2 Spanish, 2 Cantonese)
 - Four weekly, 2-hour-long sessions
 - Team-based approach (MD, RN, navigators, guest speakers)

San Antonio Breast Cancer Symposium® | @SABCSSanAntonio

Results

53 women with stage I-III breast cancer

	Total	English	Spanish	Cantonese
Participants	53	15 (28%)	18 (34%)	20 (38%)
Median Age	58	54	52	62.5
Foreign-born	43 (81%)	5 (33%)	18 (100%)	20 (100%)
Attendance	98%	97%	97%	100%

	Yes/Agree/Agree Strongly	No/Disagree/Disagree Strongly
Telehealth Format is acceptable	53 (100%)	0 (23%)
It was easy for me to login and stay connected	47 (89%)	3 (22%)
Telehealth group sessions are good use of my time	53 (100%)	0 (0%)

San Antonio Breast Cancer Symposium® | @SABCSSanAntonio

Lessons Learned & Next Steps

- Telehealth Group Visits are acceptable in a safety net setting in providing survivorship care
- Effective in bridging unmet survivorship care needs
- Fear of cancer recurrence is the biggest concern for patients

- Billing and financial sustainability
- Qualitative interview analysis
- Utilizing GMV for purposes (transitional from oncology to PCP, reducing oncology visits, etc.)

DO NOT POST

San Antonio Breast Cancer Symposium® | @SABCSSanAntonio

Poster Spotlight Session 18: Disparate Care Calls for Desperate Measures: Understanding Gaps in Quality of Care and Opportunities to Improve it

- ctDNA genomic profiles
- Obesity/ Mammaprint
- Duffy-null and AA ancestry influence in the TNBC

Friday, December 8, 2023, 7:00 AM - 8:00 AM CT Location: Stars at Night Ballroom 1-2 CE: 1

Differences in ctDNA genomic profiles and outcomes in Black and White patients with metastatic breast cancer: results from a large multicenter consortium

Presenter: Emily L. Podany¹

<u>Emily L. Podany¹</u>, Lorenzo Foffano², Lorenzo Gerratana², Arielle J. Medford³, Katherine Clifton¹, Whitney L. Hensing⁴, Renee Morecroft¹, Marko Velimirovic⁵, Ami N. Shah⁶, Carolina Reduzzi⁷, Laura Munoz Arcos⁷, Charles S. Dai³, Jennifer Keenan³, Elyssa N. Denault³, Foluso O. Ademuyiwa¹, Fabio Puglisi², Cynthia X. Ma¹, Aditya Bardia³, Massimo Cristofanilli⁷, Andrew A. Davis¹

¹Washington University in St. Louis, St. Louis MO ²University of Udine, Udine, Italy ³Massachussetts General Hospital Cancer Center, Boston, MA ⁴Saint Luke's Hospital, Kansas City, MO ⁵Cleveland Clinic, Cleveland, OH ⁶Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL ⁷Weill Cornell Medicine, New York, NY

I have no financial relationships to disclose

This presentation is the intellectual property of the author/presenter. Contact them at Podany, Emily <u>elpodany@wustl.edu</u> for permission to reprint and/or distribute

Hypothesis and Methods

 Hypothesis: There may be racial differences in genetic profiles in metastatic breast cancer patients. These may impact treatment response and clinical outcomes.

Methods:

- Retrospective cohort study
- 1327 patients treated at Washington University in St. Louis (n=474), Massachusetts General Hospital (n=412), and Northwestern University (n=441), all with ctDNA profiling from Guardant360. Race was patient-reported.
- Univariate and multivariate analyses to evaluate single gene mutations and genetic pathways in both entire cohort and hormone-receptor positive, HER2 negative population
- Prognostic impact evaluated through multivariate analysis in both White and Black patient populations

	Number	Percentage
<u>Race</u>		
White	1061	80.02%
Black	135	10.18%
<u>Histologic subtype</u>		
IDC	891	81.22%
ILC	152	13.86%
Other	54	4.92%
<u>HR status</u>		
Positive	1043	78.48%
HER2 status		
Positive	180	13.87%
Negative	1118	86.13%
<u>Metastatic disease sites</u>		
Lung	388	29.19%
Liver	468	35.21%
Bone	888	66.82%
Softtissue	252	18.96%
CNS	107	8.13%
<u>Prior treatments</u>		
Chemotherapy	431	43.84%
Endocrine therapy	596	60.64%
CDK4/6i	401	40.79%
mTORi	128	13.02%
РІЗКі	43	4.37%
Immunotherapy	34	3.50%

SAN ANTONIO BREAST CANCER SYMPOSIUM®

Results

 Black patients had significantly higher rates of GATA3 snv and CCND2 cnv

		<u>95% confidence</u>	
Gene associations	<u>Odds ratio</u>	<u>interval</u>	<u>p-value</u>
Black patients in overall population			
GATA3 s n v	2.02	1.07-3.81	0.031
CCND2 cnv	3.42	1.39-8.43	0.008
Black patients in HR+/HER2- population			
GATA3 s n v	2.04	1.02-4.08	0.042
PDGFRA cnv	3.95	1.33-11.72	0.013
CCND1 cnv	1.71	0.90-3.26	0.099
		<u>95% confidence</u>	
<u>Prognostic associations</u>	<u>Hazard ratio</u>	interval	<u>p-value</u>
White patients in HR+/HER2- population			
Livermetastases	1.79	1.40-2.28	< 0.001
Soft tissue metastases	1.63	1.19-2.23	0.002
CNS metastases	2.14	1.33-3.45	0.002
ESR1 snv	1.42	1.09-1.85	0.01
TP53 snv	1.53	1.20-1.94	0.001
NF1snv	1.9	1.06-3.41	0.031
CCND1 cnv	1.54	1.03-2.30	0.037
MYC cnv	2.04	1.30-3.20	0.002
Black patients in HR+/HER2- population			
Livermetastases	3.9	2.02-7.54	< 0.001
PI3Ksnvpathway	2.19	1.14-4.21	0.018

- Overall survival from time of ctDNA testing was significantly lower in Black patients after adjusting for other variables.
- Patients with higher mean allelic frequency had a worse prognosis regardless of race, though Black patients with MAF ≥3.3% had the poorest prognosis
- There was no difference in MAF between White and Black patients

- To our knowledge, this is the largest clinical genomic dataset examining ctDNA differences across Black and White patients
- GATA3 and CCND2 are not targetable by current treatments
- We will need to focus on both socioeconomic and genetic factors to explain shorter overall survival and early separation of the curves in Black patients
- We are working with Guardant Health to validate our findings in a large clinical genomic real-world dataset

Racial Disparities in Breast Cancer and Effect of Obesity: MammaPrint[®], BluePrint[®] and Whole Transcriptome Analyses of Tumors in Latin American Patients in the FLEX Trial

Marcela Mazo Canola¹,

Virginia Kaklamani¹, Pooja P. Advani², Sailaja Kamaraju³, Alfredo A. Santillan-Gomez⁴, Robert Maganini⁵, Julie L. Barone⁶, Sahra Uygun⁷, Lavanya Samraj⁷, William Audeh⁷, Joyce O'Shaughnessy⁸, FLEX Investigators Group

¹**UT Health San Antonio, Mays MD Anderson Cancer Center, TX**; ²Mayo Clinic, Jacksonville, FL; ³Medical College of Wisconsin, Milwaukee, WI; ⁴Texas Oncology Medical Center, San Antonio, TX; ⁵Ascension, Bartlett, IL; ⁶Vail Health, Vail, CO; ⁷Agendia Inc., Irvine, CA; ⁸Baylor University Medical Center, Texas Oncology and The US Oncology Network, Dallas, TX

Disclosure Information

This study is in collaboration with Agendia Inc. Speaker: Gilead, Seagen and Menarini Consulting: Lilly

Objectives

San Antonio Breast Cancer Symposium[®] December 5-9, 2023 | San Antonio, TX | @SABCSSanAntonio

- Latin Americans (LA) are more likely to be diagnosed with aggressive early-stage breast cancer compared to Non-Hispanic White (NHW) in the US¹.
- Studying genomic and transcriptomic differences between patient groups help understand disease biology and help tailor their treatment options.
- We compared clinically matched tumors from LA and NHW breast cancer patients enrolled in FLEX.
- FLEX (NCT03053193) is a prospective, observational trial including stage I-III breast cancer patients who receive MammaPrint (with or without BluePrint).

Matched tumors from Latin American and White patients

	LA	NHW	p-value
Diabetic status			
Туре 2	68 (23.3%)	24 (8.5%)	
Туре 1	1 (0.3%)	3 (1.1%)	~ 0 001
Pre-diabetes	0 (0.0%)	1 (0.4%)	< 0.001
No diabetes	223 (76.4%)	253 (90.0%)	
BMIcategory			
Obese	148 (49.0%)	119 (39.4%)	
Overweight	106 (35.1%)	91 (30.1%)	- 0 001
Normal	43 (14.2%)	85 (28.1%)	< 0.001
Underweight	5 (1.7%)	7 (2.3%)	
BluePrint			
Luminal A (MP* Low)	141 (45.3%)	152 (48.9%)	
Luminal B (MP High)	114 (36.7%)	122 (39.2%)	0.190
Basal**	46 (14.8%)	29 (9.3%)	
HER2	10 (3.2%)	8 (2.6%)	
ImPrint HR+			
ImPrint+	30 (12.0%)	13 (5.1%)	0.005
ImPrint-	219 (88.0%)	242 (94.9%)	0.005

Matching was done by age, T-stage, N-stage and hormone status * MP: MammaPrint **Two-proportions z-test in Basal group, p-value = 0.049

Results

San Antonio Breast Cancer Symposium[®] December 5-9, 2023 | San Antonio, TX | @SABCSSanAntonio

Luminal B obese LA vs NHW Luminal B obese LA vs Black INTERFERON ALPHA RESPONSE PSPH 7 . . . 1.5 . ALLOGRAFT REJECTION **IGKV6-21** UPRT -log10(adj p-value) -value) INFLAMMATORY_RESPONSE MAP1LC3F RPS23 IGHG4 3 INTERFERON_GAMMA_RESPONSE Set IGHV7-4-ESTROGEN_RESPONSE_LATE 1.0 Gene ESTROGEN_RESPONSE_EARLY IGHV1-2 Ò LINC01806 -log10(adj FATTY ACID METABOLISM ZDHHC11 Hallmark DNA REPAIR 0.5 TGF_BETA_SIGNALING GKV1D-33 UV RESPONSE DN PROTEIN_SECRETION Comparison MYC_TARGETS_V1 0.0 0 LA vs NHW OXIDATIVE PHOSPHORYLATION -2 -1 LA vs Black ADIPOGENESIS log2(FC)log2(FC)-10 10 20 Downregulated in Upregulated in Downregulated in Upregulated in -log10(adj p-value) * sign(NES) Latin American Latin American Latin American Latin American

Gene Set Enrichment Analysis

Gene expression differences between LA and NHW are associated with increased immune and inflammatory pathways in LA

Whole transcriptome comparison

Conclusions San Antonio Breast Cancer Symposium®

December 5-9, 2023 | San Antonio, TX | @SABCSSanAntonio

- When matched for age and tumor characteristics, LA patients had higher percentages of the following compared to NHW patients:
 - Type 2 diabetes (23.3% vs 8.5%)
 - BMI obese (49.0% vs 39.4%)
 - BluePrint Basal (14.8% vs 9.3%)
 - ImPrint positive in the HR+ subgroup (12.0% vs 5.1%)
- Transcriptomic differences between tumors from Luminal B obese LA and NHW showed immune response differences that may contribute to the aggressive tumor biology.
- Obesity seems to affect LA and Black breast cancer biology differently than NHW patients. Immune system differences derived from genetic ancestry may be involved.

This study shows the importance of including diverse patients in real world evidence cohorts such as FLEX to help reduce racial disparities in breast cancer outcome.

The DARC side of Breast Cancer – DARC, Duffy-null and African ancestry influence in the Triple Negative Breast Cancer tumor microenvironment

Rachel Martini, PhD*, Stevens Patino, Emma Guyonnet, Brian Stonaker, Isra Elhussein, Julie Sahler, Avery August, Nancy Manley, Rick Kittles, Clayton Yates, Lisa Newman, Melissa Davis

Morehouse School of Medicine, Atlanta, GA

I have no financial relationships to disclose.

TNBC, African ancestry and the Duffy-null allele

What is the role of DARC in the triple negative breast tumor microenvironment?

DO NOT POST

San Antonio Breast Cancer Symposium® | @SABCSSanAntonio

DO NOT POST

Multi-omics approach to characterize influence of DARC in the TNBC tumor microenvironment

DO NOT POST

San Antonio Breast Cancer Symposium[®] | @SABCSSanAntonio

DO NOT POST

Conclusions

- TNBC tumors have worse prognosis due to lack of targeted therapeutic options
- Increased immunogenicity of TNBC tumors may be driven by DARC expression, especially among women of African ancestry
- Characterization of Duffy-null status, and DARC among other cell types in the TNBC tumor microenvironment could present new opportunities for biomarker and/or therapeutic development to improve prognosis for these underserved populations
- Thank you!

This presentation is the intellectual property of the author/presenter. Contact them at rmartini@msm.edu for permission to reprint and/or distribute

Tumor Infiltrating Lymphocytes and Breast Cancer-Specific Mortality in Racially and Ethnically Diverse Participants of the Northern California Breast Cancer Family Registry

Julia D. Ransohoff, MD, Iain Miller, MD, Jocelyn Koo, Vishal Joshi, Allison W. Kurian, MD, MSc, Kimberly H. Allison, MD, Esther M. John, PhD, MSPH*, Melinda L. Telli, MD* (*co-senior investigators)

Stanford University School of Medicine

Stanford, California, United States

I have no financial relationships to disclose.

This presentation is the intellectual property of Julia Ransohoff. Contact them at ransohoff@stanford.edu for permission to reprint and/or distribute.

Hypothesis, Objective, & Methods

- Hypothesis: Tumor infiltrating lymphocyte (TIL)-associated survival associations may vary by race and ethnicity, contributing to racial and ethnic disparities in breast cancer survival.
- Objective: To assess associations of TIL scores with baseline patient and tumor characteristics and survival outcomes of Northern California Breast Cancer Family Registry participants.
- Methods:
 - ➤ TILs scored in deciles by two independent pathologists; lymphocyte-predominant breast cancer defined as ≥50% stromal TILs.
 - Associated stromal TIL scores with patient characteristics (regression analysis) and survival (Cox proportional hazards regression).

This presentation is the intellectual property of Julia Ransohoff. Contact them at ransohoff@stanford.edu for permission to reprint and/or distribute.

Group

LPBC --- non-LPBC

Results

Breast cancer-specific mortality varies by TIL score and by race and ethnicity

Models adjusted for age at diagnosis (continuous), stage (stage I, stage II, III, unknown), pre-diagnosis BMI (<30, ≥30 kg/m2), and germline *BRCA2* pathogenic variant status (positive, negative, not tested).

This presentation is the intellectual property of Julia Ransohoff. Contact them at ransohoff@stanford.edu for permission to reprint and/or distribute.

Group -----

LPBC --- non-LPBC

Conclusions, Implications, & Next Steps

- sTIL enrichment was not associated with a survival advantage among women from minoritized groups, who more often experience health disparities.
 - Suggesting complex factors influence sTIL phenotype.
- Key questions for future study:
 - Should immune biomarkers such as TILs be used to inform treatment deescalation in African American and Hispanic women?
 - Does immunotherapy overcome survival disparities?
- Direct potential to inform future prospective investigations of TIL biology and TIL-guided treatment approaches.

THANK YOU