SABCS 2022: Precision Medicine and Genomics Update

Marina Sharifi, MD, PhD
Assistant Professor
University of Wisconsin Carbone Cancer Center

Disclosures

None

Agenda

- 1. Genomic predictors for adjuvant therapy selection in localized ER+ breast cancer:
 - Long term outcomes from the TAILORx trial
 - Does Breast Cancer Index predict benefit of ovarian function suppression in pre-menopausal women in the SOFT trial?

Agenda

- 1. Genomic predictors for adjuvant therapy selection in localized ER+ breast cancer:
 - Long term outcomes from the TAILORx trial
 - Does Breast Cancer Index predict benefit of ovarian function suppression in pre-menopausal women in the SOFT trial?
- 2. Liquid biopsies for evaluation of endocrine therapy resistance in localized and advanced ER+ breast cancer
 - ctDNA monitoring in a phase II study of adjuvant endocrine therapy with ribociclib for localized ER+ breast cancer
 - ctDNA molecular response and clinical outcomes in advanced ER+ breast cancer on first line AI

Agenda

1. Genomic predictors for adjuvant therapy selection in localized ER+ breast cancer

Chemotherapy vs No chemotherapy Tamoxifen
Al
Ovarian suppression

Bisphosphonates CDK4/6i

Extended endocrine therapy

Prognostic biomarkers

Clinicopathologic data

Chemotherapy vs No chemotherapy Tamoxifen
Al
Ovarian suppression

Bisphosphonates CDK4/6i

Extended endocrine therapy

Prognostic biomarkers

Clinicopathologic data
Oncotype DX RS
MammaPrint
Prosigna

EndoPredict

Breast Cancer Index

Chemotherapy vs No chemotherapy Tamoxifen
Al
Ovarian suppression

Bisphosphonates CDK4/6i

Extended endocrine therapy

Prognostic biomarkers	Clinicopathologic data Oncotype DX RS MammaPrint Prosigna EndoPredict Breast Cancer Index	a	
Predictive biomarkers	Oncotype DX RS		Breast Cancer Index

Tamoxifen

ΑI

Chemotherapy

VS

Breast Cancer Index

Oncotype DX RS

Predictive

biomarkers

Prognostic biomarkers

Clinicopathologic data
Oncotype DX RS
MammaPrint
Prosigna
EndoPredict

CDK4/6i

CDK4/6i

therapy

CDK4/6i

CDK4/6i

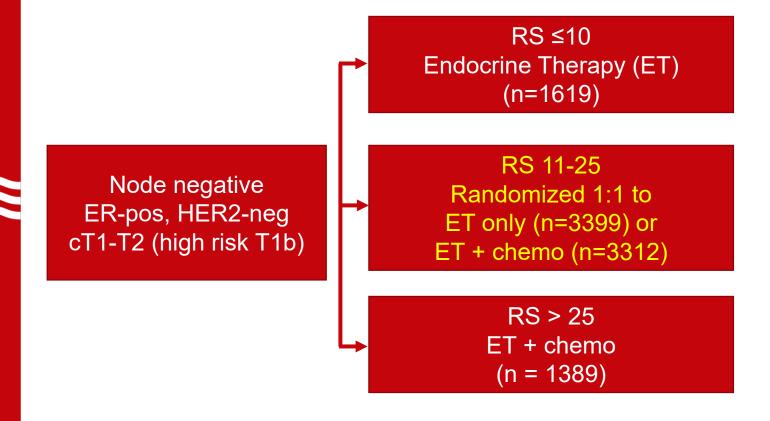
therapy

Bisphosphonates

 Long term outcomes from the TAILORx trial (GS01-05, Sparano et al)

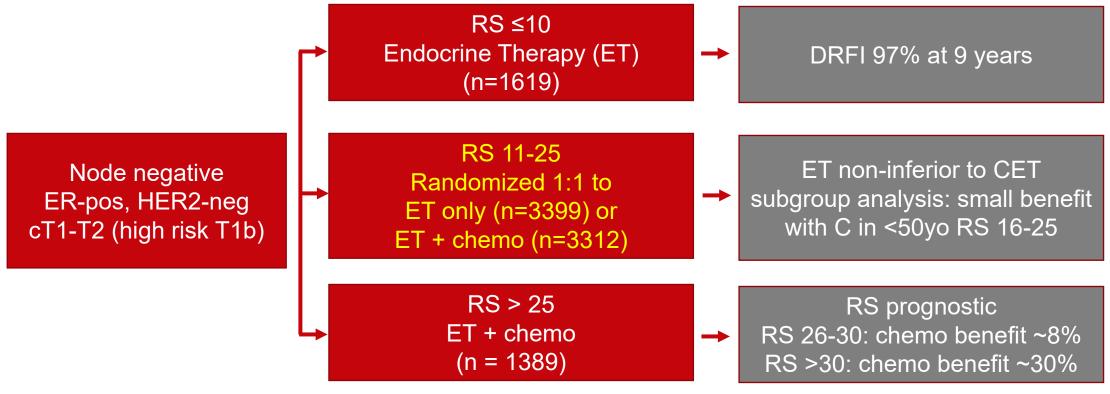
Extended

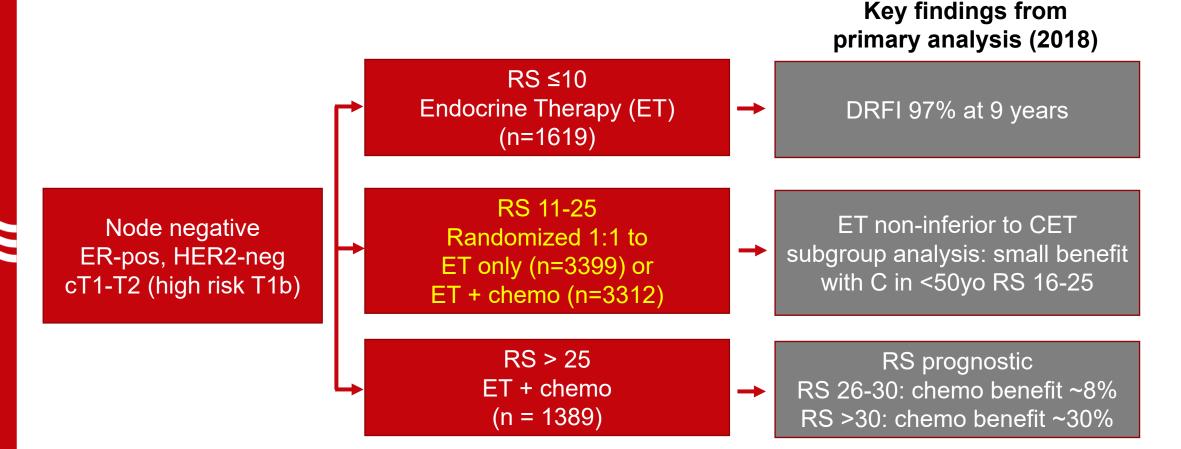
endocrine


Breast Cancer Index

12 year update of the TAILORx trial

 Oncotype DX RS: 21-gene expression signature of genes involved in proliferation and estrogen receptor signaling


TAILORx design


TAILORx design

TAILORx design

Subsequent key findings:

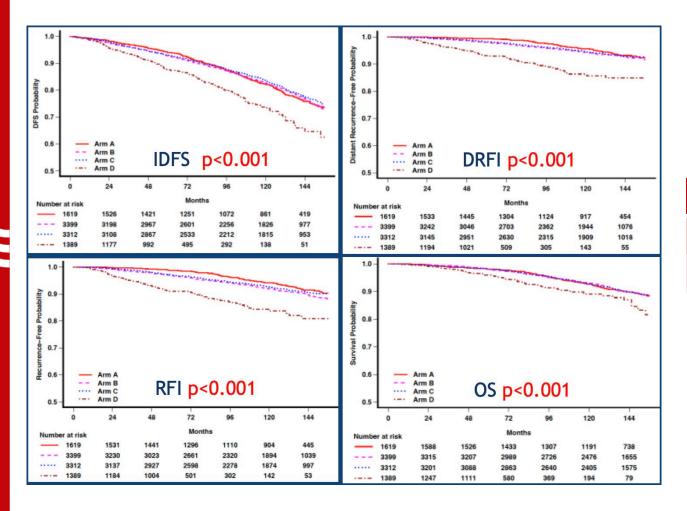
- Integration of RS with clinicopathologic factors gives additional prognostic information (RSClin)
- Black race associated with worse outcomes but still prognostic and predictive

TAILORx update

 Over half of ER+ breast cancer recurrences occur after 5 years, and trial design pre-specified follow up to 20 years

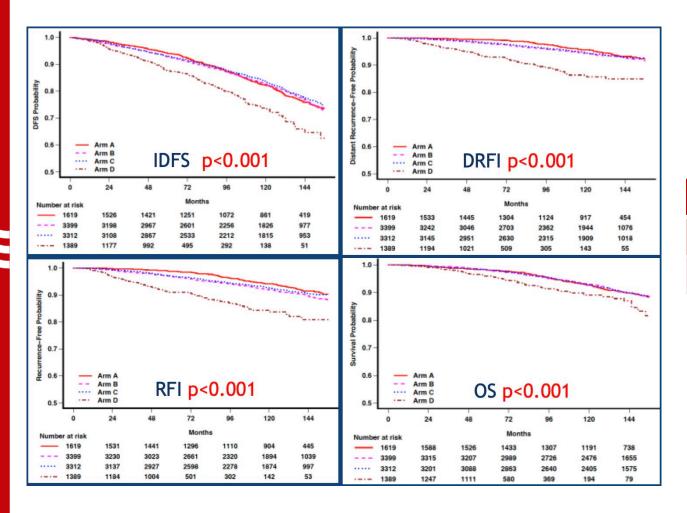
TAILORx update

- Over half of ER+ breast cancer recurrences occur after 5 years, and trial design pre-specified follow up to 20 years
- Median follow up now 10.4 up from 7.5 years → captures more late recurrences/deaths
 - Median ET duration 5.1 years

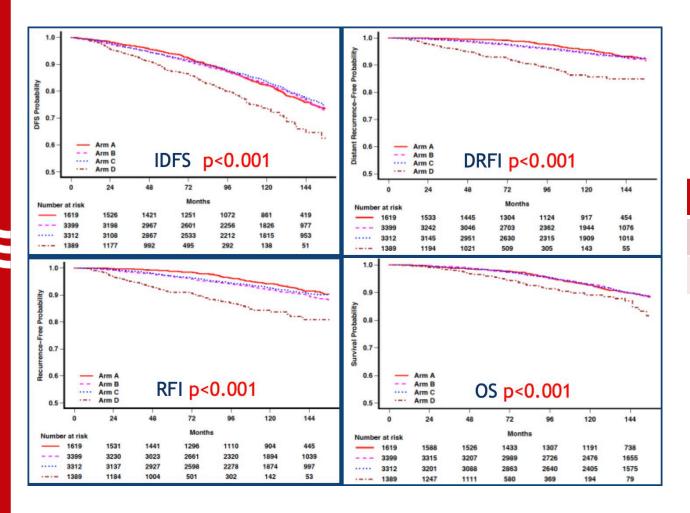

TAILORx update

- Over half of ER+ breast cancer recurrences occur after 5 years, and trial design pre-specified follow up to 20 years
- Median follow up now 10.4 up from 7.5 years → captures more late recurrences/deaths
 - Median ET duration 5.1 years

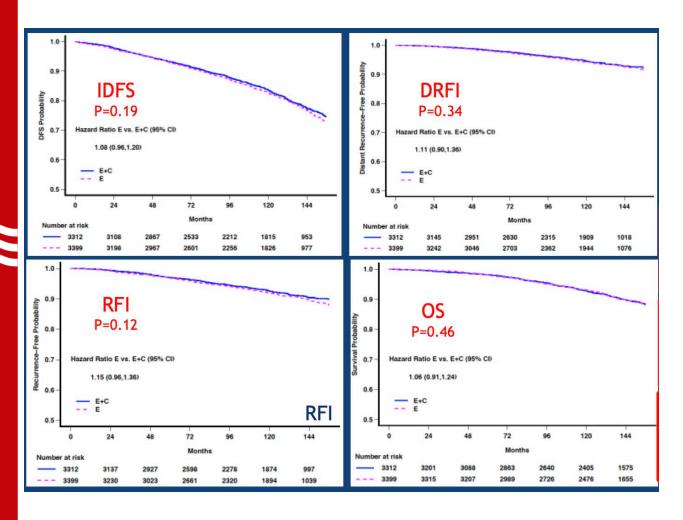
Endpoint	Definition	Original RS 11-25	Current RS 11-25	Original All Arms	Current All Arms
IDFS	S Any recurrence + second primary + death		1295	1210	1819
DRFI	Distant recurrence	250	375	384	561
RFI	RFI Distant + locoregional recurrence		528	543	764
OS	Death	343	660	499	910


RS score and prognosis

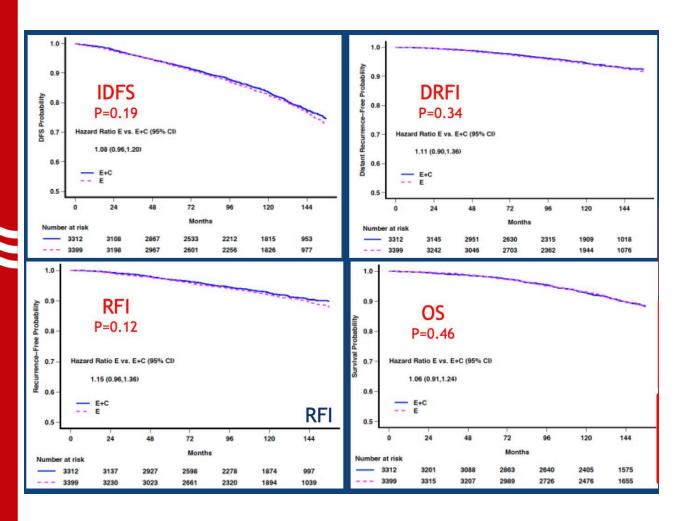
Endpoint	RS <11	RS 11-25	RS > 26
RFI	91.4%	89.6%	80.9%
DRFI	93.2%	92.8%	84.8%


RS score and prognosis

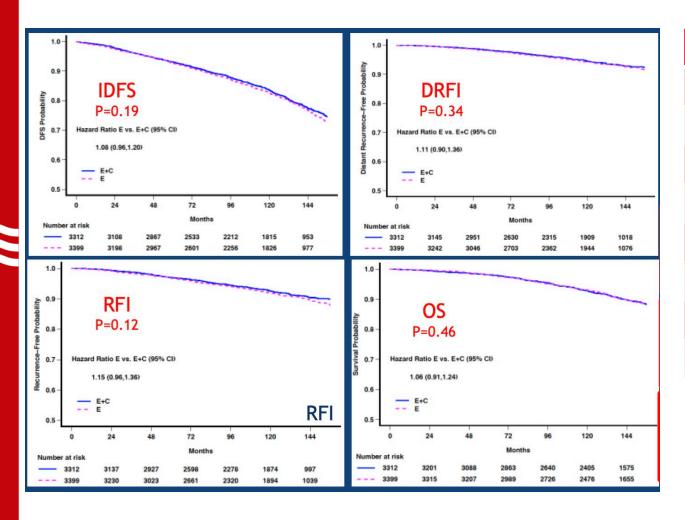
Endpoint	RS <11	RS 11-25	RS > 26
RFI	91.4%	89.6%	80.9%
DRFI	93.2%	92.8%	84.8%


RS score and prognosis

Endpoint	RS <11	RS 11-25	RS > 26
RFI	91.4%	89.6%	80.9%
DRFI	93.2%	92.8%	84.8%


ET vs Chemo/ET in RS 11-25 ITT population

Endpoint	Cut-point	ET only	C/ET
IDFS	5 years	92.8%	93.1%
	12 years	76.8%	77.4%
DRFI	5 years	98.0%	98.2%
	12 years	92.6%	92.8%
RFI	5 years	96.9%	97.0%
	12 years	89.6%	90.5%
OS	5 years	98.0%	98.1%
	12 years	89.8%	89.8%


ET vs Chemo/ET in RS 11-25 ITT population

Endpoint	Cut-point	ET only	C/ET
IDFS	5 years	92.8%	93.1%
	12 years	76.8%	77.4%
DRFI	5 years	98.0%	98.2%
	12 years	92.6%	92.8%
RFI	5 years	96.9%	97.0%
	12 years	89.6%	90.5%
OS	5 years	98.0%	98.1%
	12 years	89.8%	89.8%

ET vs Chemo/ET in RS 11-25 ITT population

Endpoint	Cut-point	ET only	C/ET
IDFS	5 years	92.8%	93.1%
	12 years	76.8%	77.4%
DRFI	5 years	98.0%	98.2%
	12 years	92.6%	92.8%
RFI	5 years	96.9%	97.0%
	12 years	89.6%	90.5%
OS	5 years	98.0%	98.1%
	12 years	89.8%	89.8%

- No change in primary conclusions
- More recurrences > 5 years as expected
- Distant recurrence ~7% at 12 years

Endpoint	Cut- point	ET only	CET	Δ
IDFS	11-15	82.3%	83.9%	NS
DRFI	11-15	96.5%	95.2%	NS
IDFS	16-20	77.2%	84.8%	7.6%
DRFI	16-20	92.3%	92.9%	NS
IDFS	21-25	75.0%	82.4%	7.4%
DRFI	21-25	85.5%	93.3%	7.8%

No benefit in RS 11-15

Endpoint	Cut- point	ET only	CET	Δ
IDFS	11-15	82.3%	83.9%	NS
DRFI	11-15	96.5%	95.2%	NS
IDFS	16-20	77.2%	84.8%	7.6%
DRFI	16-20	92.3%	92.9%	NS
IDFS	21-25	75.0%	82.4%	7.4%
DRFI	21-25	85.5%	93.3%	7.8%

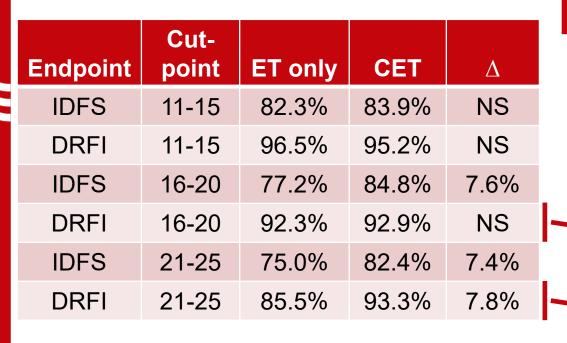
Endpoint	Cut- point	ET only	CET	Δ
IDFS	11-15	82.3%	83.9%	NS
DRFI	11-15	96.5%	95.2%	NS
IDFS	16-20	77.2%	84.8%	7.6%
DRFI	16-20	92.3%	92.9%	NS
IDFS	21-25	75.0%	82.4%	7.4%
DRFI	21-25	85.5%	93.3%	7.8%

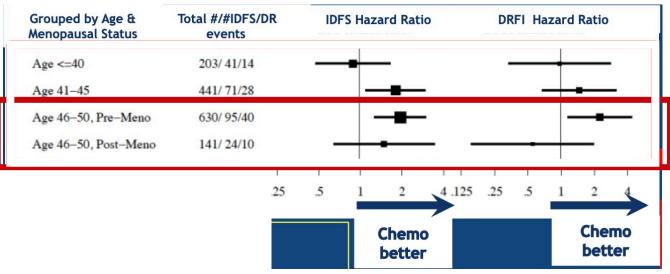
	Clinical Risk	No.	Abs chemo benefit
	Low	671 (76%)	-0.5% (SE 2.2%)
	High	215 (24%)	+3.1% (SE 5.4%)
	Low	319 (67%)	+5.9% (SE 3.4%)
_	High	157 (33%	+11.7% (SE 7.2%)

Endpoint	Cut- point	ET only	CET	Δ
IDFS	11-15	82.3%	83.9%	NS
DRFI	11-15	96.5%	95.2%	NS
IDFS	16-20	77.2%	84.8%	7.6%
DRFI	16-20	92.3%	92.9%	NS
IDFS	21-25	75.0%	82.4%	7.4%
DRFI	21-25	85.5%	93.3%	7.8%

Clinical Risk	No.	Abs chemo benefit
Low	671 (76%)	-0.5% (SE 2.2%)
High	215 (24%)	+3.1% (SE 5.4%)
Low	319 (67%)	+5.9% (SE 3.4%)
- High	157 (33%	+11.7% (SE 7.2%)

• Possible DRFI benefit in RS 16-20 **only** in clinical high risk




Endpoint	Cut- point	ET only	CET	Δ
IDFS	11-15	82.3%	83.9%	NS
DRFI	11-15	96.5%	95.2%	NS
IDFS	16-20	77.2%	84.8%	7.6%
DRFI	16-20	92.3%	92.9%	NS
IDFS	21-25	75.0%	82.4%	7.4%
DRFI	21-25	85.5%	93.3%	7.8%

Clinical Risk	No.	Abs chemo benefit
Low	671 (76%)	-0.5% (SE 2.2%)
High	215 (24%)	+3.1% (SE 5.4%)
Low	319 (67%)	+5.9% (SE 3.4%)
- High	157 (33%	+11.7% (SE 7.2%)

- Possible DRFI benefit in RS 16-20 **only** in clinical high risk
- Significant DRFI benefit in RS 21-25 **especially** in clinical high risk

CI	inical Risk	No.	Abs chemo benefit
-	Low	671 (76%)	-0.5% (SE 2.2%)
-	High	215 (24%)	+3.1% (SE 5.4%)
•	Low	319 (67%)	+5.9% (SE 3.4%)
•	High	157 (33%	+11.7% (SE 7.2%)

- Possible DRFI benefit in RS 16-20 only in clinical high risk
- Significant DRFI benefit in RS 21-25 **especially** in clinical high risk

Conclusions:

- Excellent long-term outcomes for RS <11 with ET alone
- Lack of chemotherapy benefit in post-menopausal women with RS <26 confirmed in longer term follow up
- In pre-menopausal women <50, chemotherapy benefit for RS 21-25, and high clinical risk RS 16-20, but not low clinical risk RS 16-20
- RS >26 DRFI 15% at 12 years

Caveats:

- The subgroup analysis of women <50 is an exploratory endpoint
- details of ET duration not reported (median 5.1y) and may have varied by clinicopathologic recurrence risk.

Caveats:

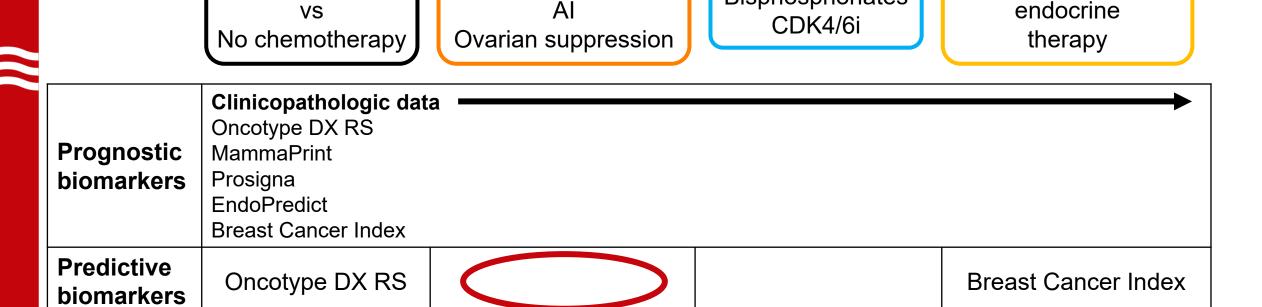
- The subgroup analysis of women <50 is an exploratory endpoint
- details of ET duration not reported (median 5.1y) and may have varied by clinicopathologic recurrence risk.

Future directions:

Outcomes in RS >26 patients suggest opportunities for treatment escalation

Caveats:

- The subgroup analysis of women <50 is an exploratory endpoint
- details of ET duration not reported (median 5.1y) and may have varied by clinicopathologic recurrence risk.

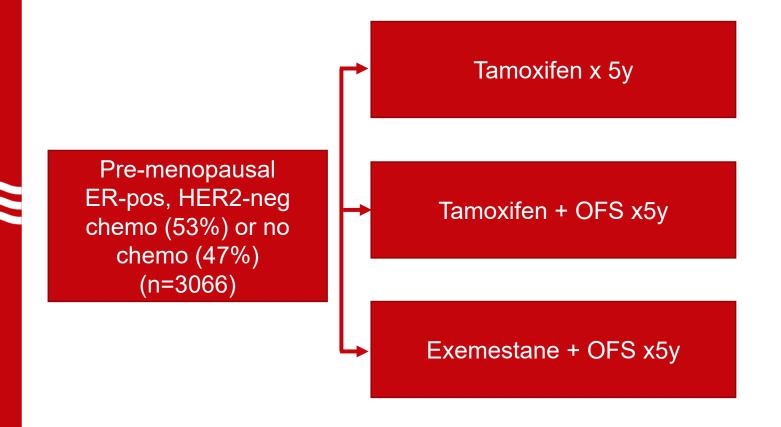

Future directions:

Outcomes in RS >26 patients suggest opportunities for treatment escalation

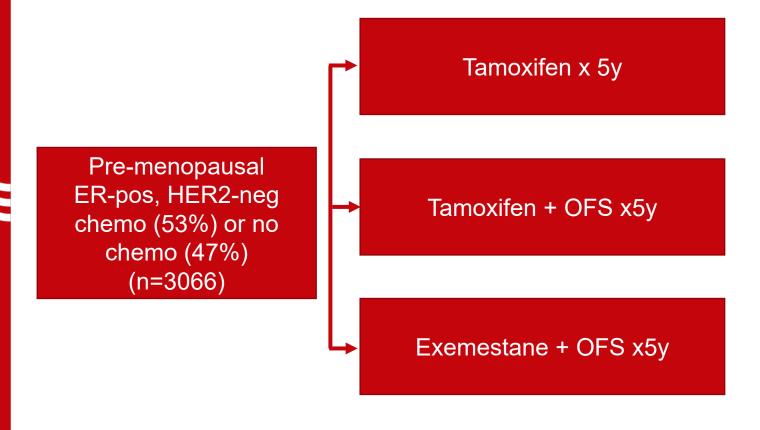
Take home: long term outcomes support the use of Oncotype DX RS in prediction of chemotherapy benefit in pre- and post-menopausal ER+ node negative breast cancer, particularly in combination with clinicopathologic risk features (RS Clin)

Tamoxifen

Bisphosphonates

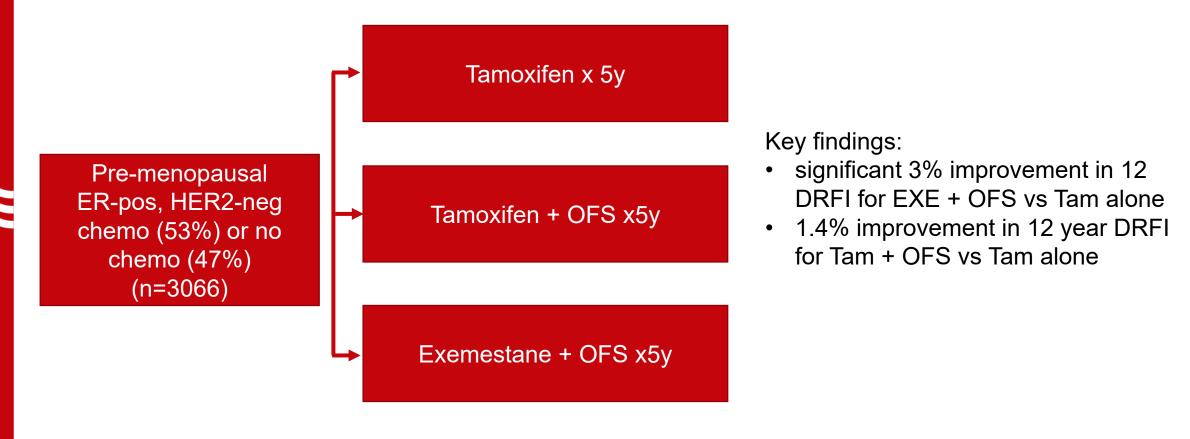

 Breast Cancer Index and OFS benefit in the SOFT trial (GS01-06, O'Regan et al)

Chemotherapy


Extended

SOFT trial

SOFT trial



Key findings:

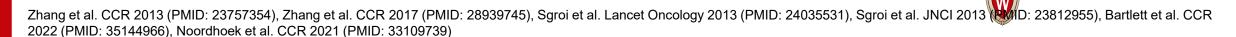
- significant 3% improvement in 12
 DRFI for EXE + OFS vs Tam alone
- 1.4% improvement in 12 year DRFI for Tam + OFS vs Tam alone

SOFT trial

- Given increased toxicity of OFS + Al approach, biomarkers to select patients who will benefit from this approach are needed
- Currently clinicopathologic risk factors are used
- No genomic biomarkers have been identified to predict benefit

Breast Cancer Index

- BCI consists of two gene expression components:
 - Molecular Grade Index 5 genes related to tumor proliferation
 - H/I 2 gene ratio related to estrogen signaling
 - BCIN+ adds tumor size and grade for node positive patients
- BCI prognostic for late (>5 year) recurrence
- High H/I ratio predictive of extended endocrine therapy benefit



Breast Cancer Index

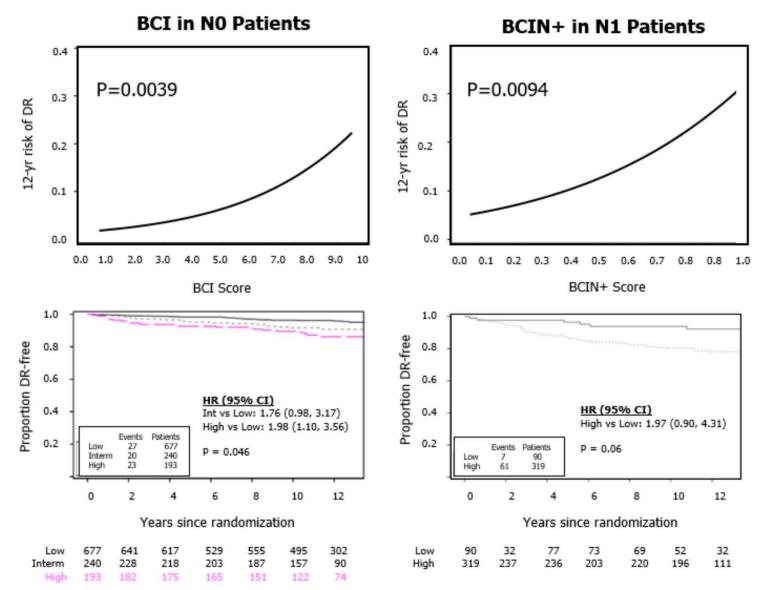
- BCI consists of two gene expression components:
 - Molecular Grade Index 5 genes related to tumor proliferation
 - H/I 2 gene ratio related to estrogen signaling
 - BCIN+ adds tumor size and grade for node positive patients
- BCI prognostic for late (>5 year) recurrence
- High H/I ratio predictive of extended endocrine therapy benefit

Translational analysis of the SOFT trial to test the following hypotheses:

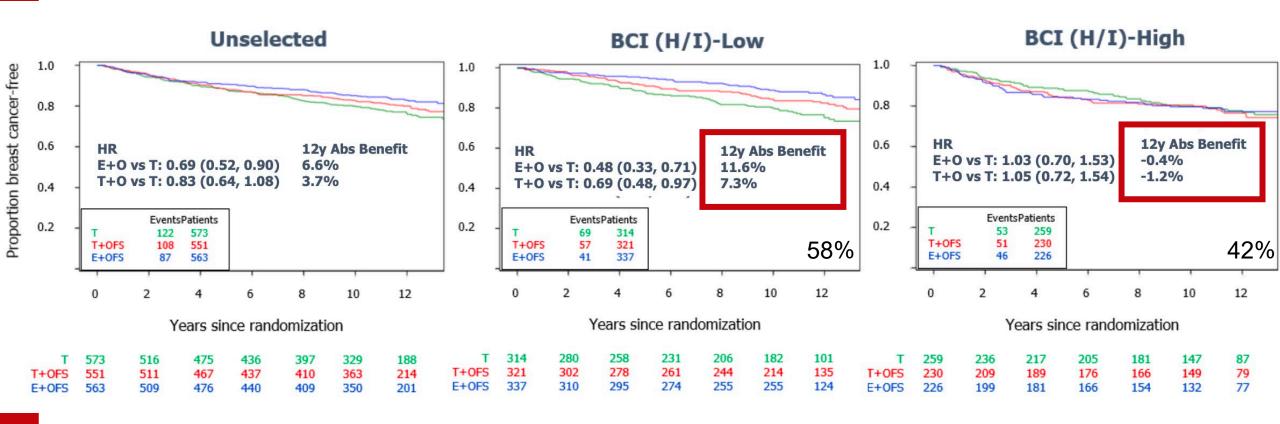
- BCI will be prognostic for recurrence in premenopausal women
- 2. High H/I ratio will predict benefit of OFS

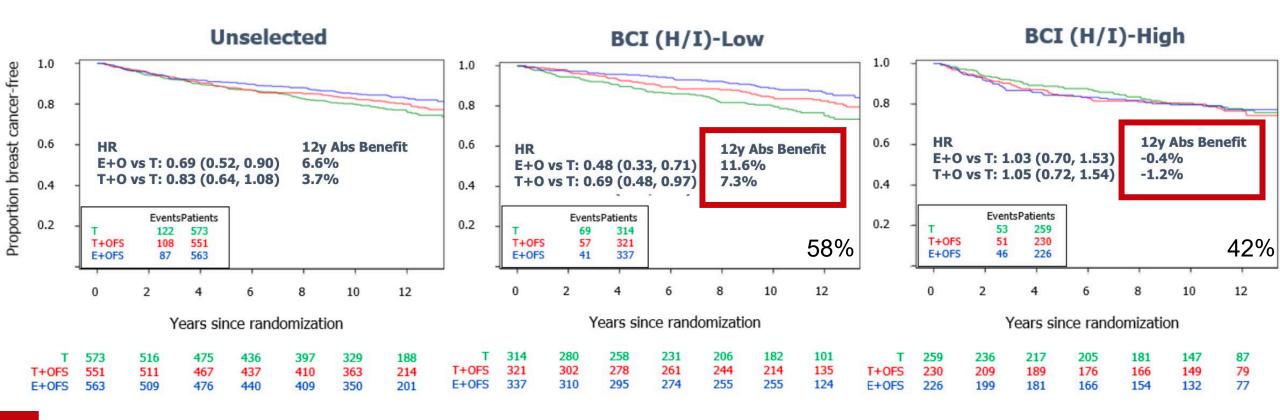
Translational analysis cohort

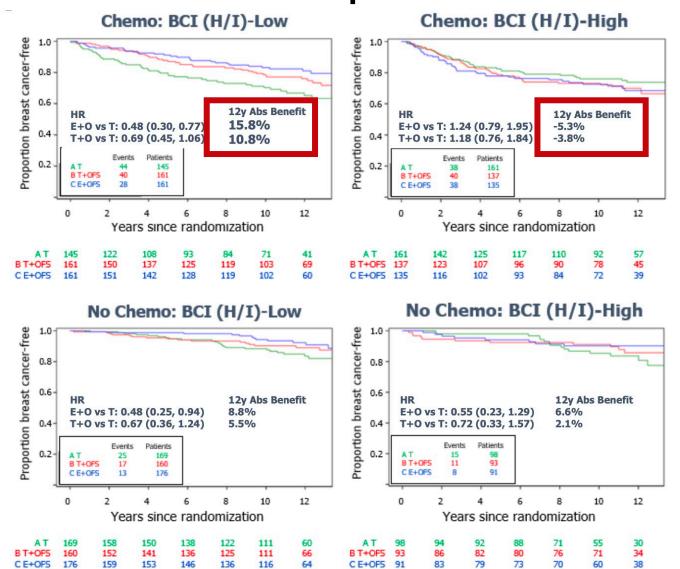
	SOFT ITT Cohort		BCI Analysis Cohort	
	N	%	N	%
N patients randomized	3047	100	1687	100
Chemotherapy				
No	1419	46.6	878	46.7
Yes	1628	53.4	900	53.3
Nodal Status				
pN0	1995	65.5	1110	65.8
pN+ 1-3	754	24.7	426	25.3
pN+ 4+	298	9.8	151	9.0
Age at randomization				
<35	350	11.5	190	11.3
35-39	583	19.1	322	19.1
40-44	907	29.8	498	29.5
45-49	910	29.9	499 □	29.6
50+	297	9.7	178	10.6
Tumor size				
≤ 2cm	2013	66.1	1082	64.1
> 2cm	964	31.6	580	34.4
Unknown	70	2.3	25	1.5
Tumor grade				
1	789	25.9	428	25.4
2	1555	51.0	846	50.1
3	642	21.1	387	22.9
Unknown	61	2.0	26	1.5

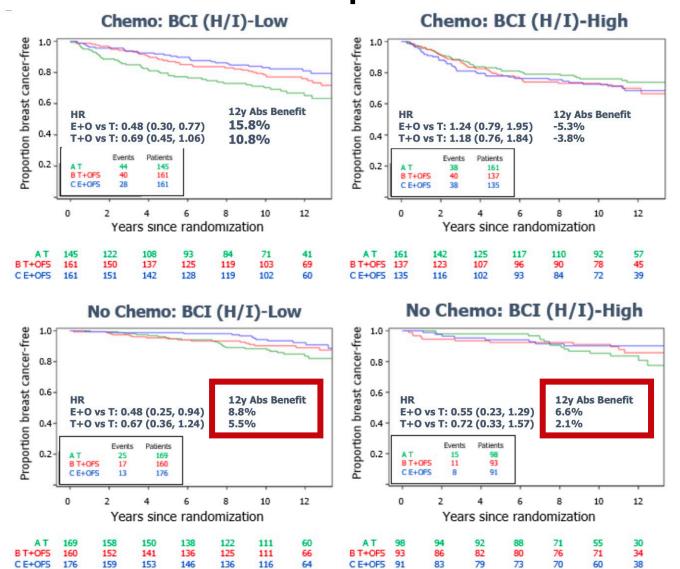

Treatment in the BCI analysis cohort:

Tam n = 573Tam + OFS n = 551


Exe + OFS n = 563


BCI is prognostic in pre-menopausal women




Unexpectedly, H/I low was predictive of OFS benefit with significant treatment by biomarker interaction for Exe + OFS vs Tam

 This is true regardless of prior chemotherapy

 This is true regardless of prior chemotherapy

Conclusions:

- BCI prognostic in pre-menopausal women with early-stage ER+ breast cancer, concordant with prior studies
- Unexpectedly, low H/I ratio predicted benefit for OFS versus tamoxifen alone, in contrast to high ratio previously shown to predict extended endocrine therapy benefit

Conclusions:

- BCI prognostic in pre-menopausal women with early-stage ER+ breast cancer, concordant with prior studies
- Unexpectedly, low H/I ratio predicted benefit for OFS versus tamoxifen alone, in contrast to high ratio previously shown to predict extended endocrine therapy benefit
 - Suggests difference in tumor biology in pre-menopausal women or between early and late recurrence

Caveats:

- BCI predictive analyses including this one have been entirely retrospective thus far
- Discordant predictive value of H/I ratio for OFS versus EET may be due to underlying biological differences but this remains unclear

Caveats:

- BCI predictive analyses including this one have been entirely retrospective thus far
- Discordant predictive value of H/I ratio for OFS versus EET may be due to underlying biological differences but this remains unclear

Future directions:

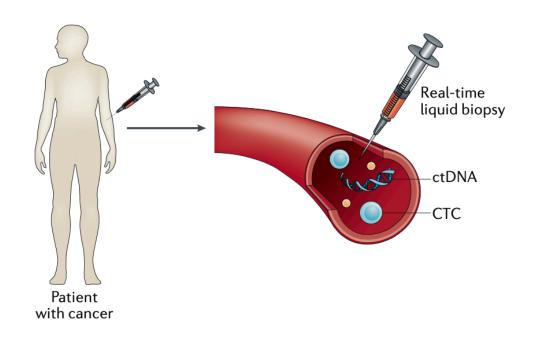
 further translational studies to understand discordance between role of H/I ratio for OFS and EET prediction, additional clinical validation

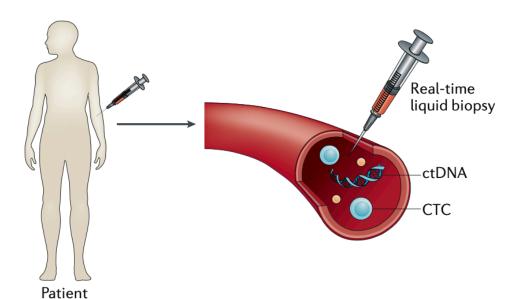
Caveats:

- BCI predictive analyses including this one have been entirely retrospective thus far
- Discordant predictive value of H/I ratio for OFS versus EET may be due to underlying biological differences but this remains unclear

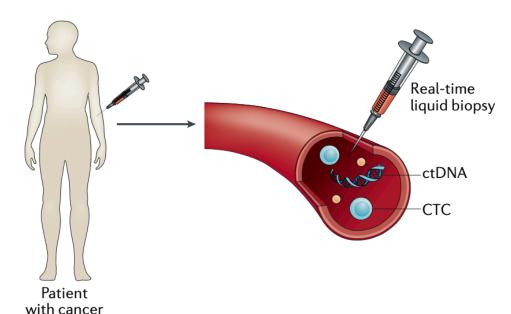
Future directions:

 further translational studies to understand discordance between role of H/I ratio for OFS and EET prediction, additional clinical validation


Take home: intriguing data suggesting a possible genomic biomarker to select patients most likely to benefit from OFS, but would benefit from additional validation and translational studies before routine clinical implementation


Agenda

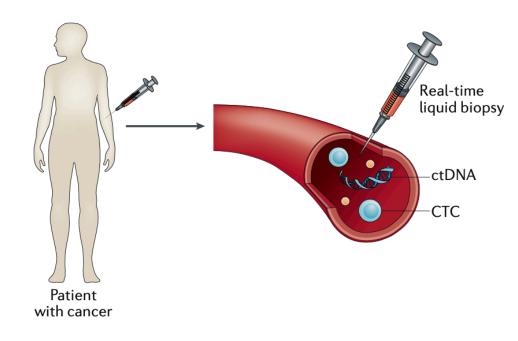
- 1. Genomic predictors for adjuvant therapy selection in localized ER+ breast cancer:
 - Long term outcomes from the TAILORx trial
 - Does Breast Cancer Index predict benefit of ovarian function suppression in pre-menopausal women in the SOFT trial?
- 2. Liquid biopsies for evaluation of endocrine therapy resistance in localized and advanced ER+ breast cancer



with cancer

ctDNA detection – many different types of approaches:

- Single genes
- Targeted sequencing
- Whole exome/genome

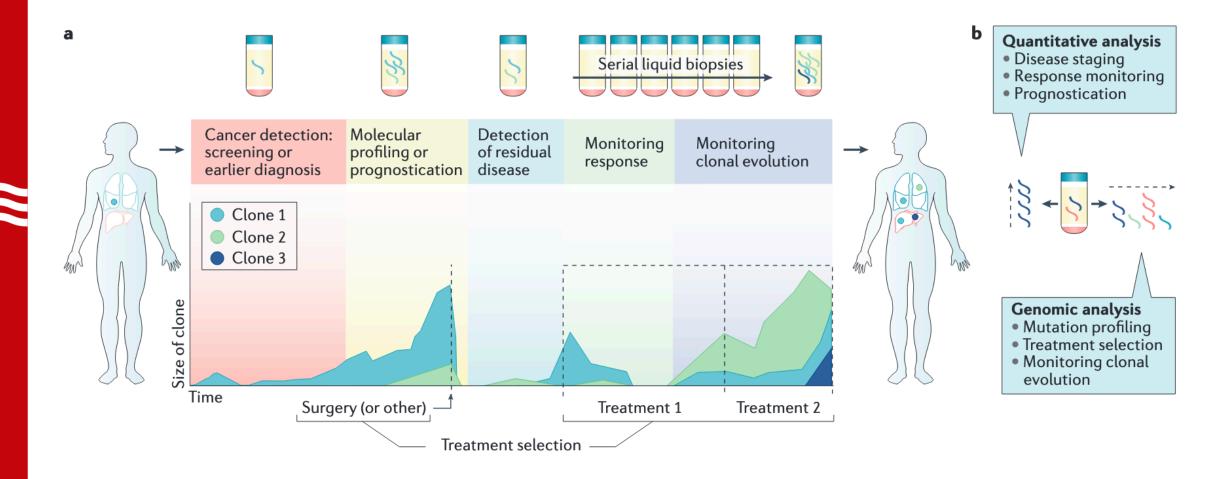

ctDNA detection – many different types of approaches:

- Single genes
- Targeted sequencing
- Whole exome/genome

Targeted sequencing approaches:

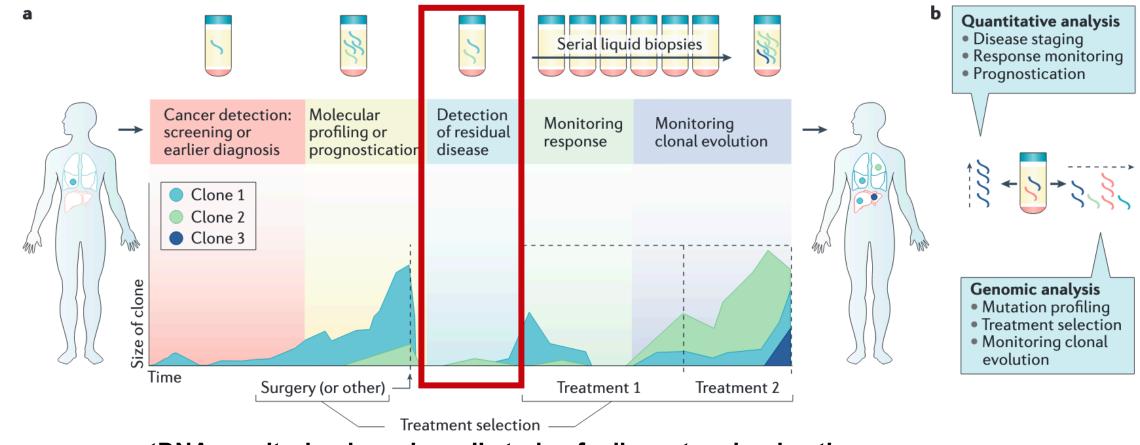
- 1. Tumor agnostic = the same set of genes for every patient
 - Lower sensitivity but faster turnaround and less expensive
 - best for detecting mutations in metastatic disease

ctDNA detection – many different types of approaches:


- Single genes
- Targeted sequencing
- Whole exome/genome

Targeted sequencing approaches:

- 1. Tumor agnostic = the same set of genes for every patient
 - Lower sensitivity but faster turnaround and less expensive
 - best for detecting mutations in metastatic disease
- 2. Tumor informed = custom patient-specific mutation panel developed from tissue biopsy
 - Higher sensitivity, typically used for MRD detection



circulating tumor DNA – clinical applications

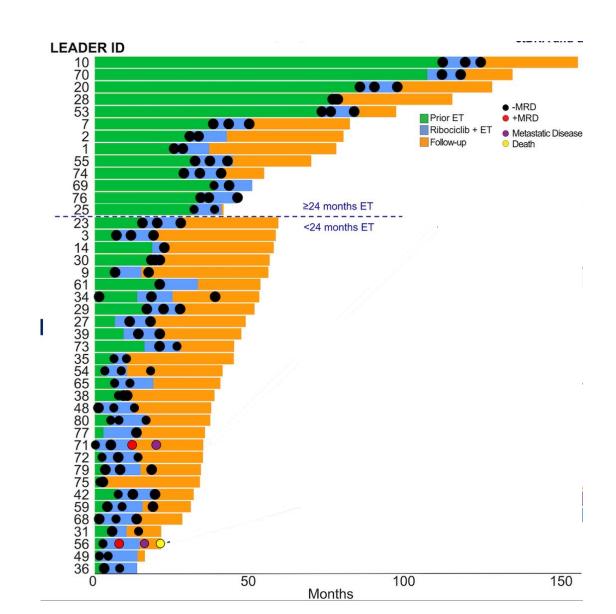
circulating tumor DNA – clinical applications

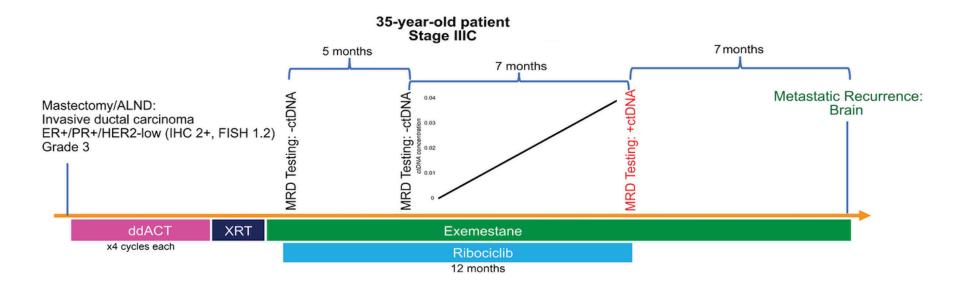
 ctDNA monitoring in a phase II study of adjuvant endocrine therapy with ribociclib for localized ER+ breast cancer (PD017-03, Medford et al.)

The LEADER trial

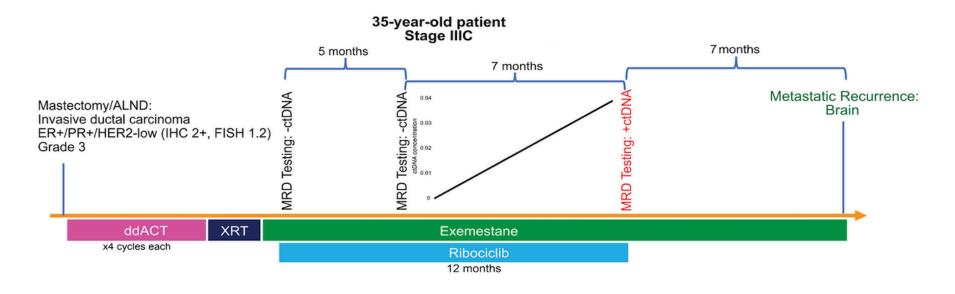
- Prospective phase II trial evaluating 1 year of ribociclib added to adjuvant endocrine therapy (ET) for patients with at least 1 remaining year of ET
- Part 1 evaluated the safety of two ribociclib schedules when combined with ET
- Plasma samples were collected at baseline and serially on treatment and analyzed via the signatera platform

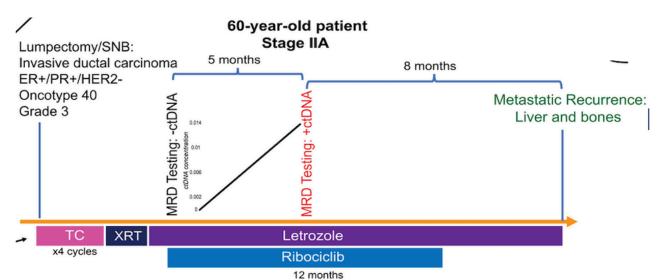
The LEADER trial


- Prospective phase II trial evaluating 1 year of ribociclib added to adjuvant endocrine therapy (ET) for patients with at least 1 remaining year of ET
- Part 1 evaluated the safety of two ribociclib schedules when combined with ET
- Plasma samples were collected at baseline and serially on treatment and analyzed via the signatera platform
- Question: is ctDNA detection on treatment associated with subsequent clinical relapse?



- 42/81 patients had at least 1 ctDNA sample
 - 22 had 3 serial samples
 - 17 had 2 serial samples
 - 3 had 1 sample
- Clinical follow up: 20 months, 2-year RFS 97%



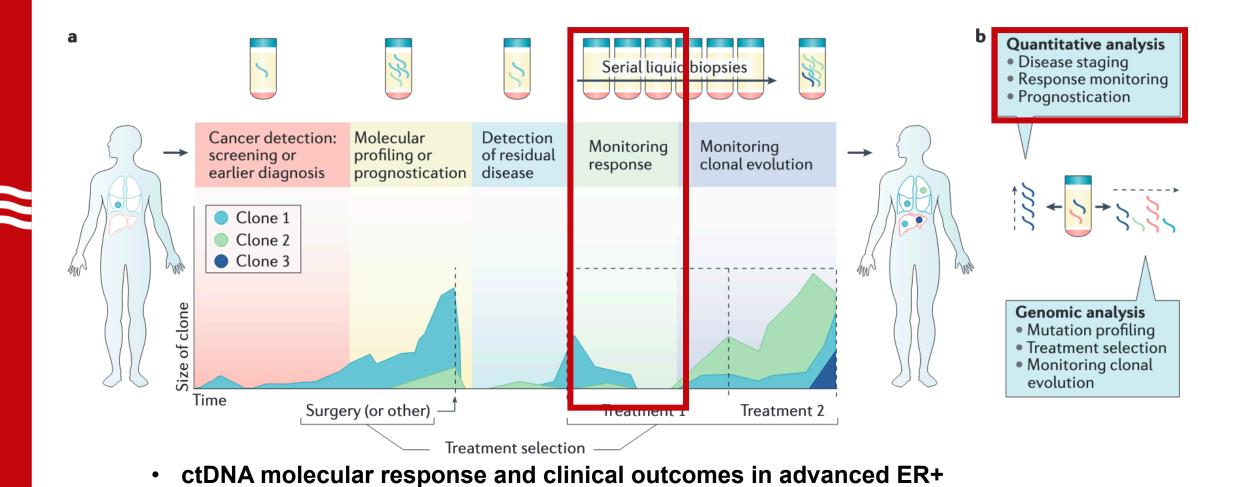

- 42/81 patients had at least 1 ctDNA sample
 - 22 had 3 serial samples
 - 17 had 2 serial samples
 - 3 had 1 sample
- Clinical follow up: 20 months, 2-year RFS 97%
- Only 2/42 patients had detectable ctDNA during follow up
- Both ctDNA+ patients relapsed with 7-8 months between ctDNA positivity and radiographic progression

PD017-03 and ctDNA MRD monitoring

 Relatively short follow up, but adds to a growing body of evidence that ctDNA detection during/after adjuvant therapy in localized breast cancer is highly associated with subsequent metastatic recurrence

PD017-03 and ctDNA MRD monitoring

- Relatively short follow up, but adds to a growing body of evidence that ctDNA detection during/after adjuvant therapy in localized breast cancer is highly associated with subsequent metastatic recurrence
- Current challenges: how do we intervene to improve outcomes?
 - Ongoing clinical trials across breast cancer subtypes
 - ER+ disease: DARE trial evaluating switch to fulvestrant/palbociclib if ctDNA positive during adjuvant AI
 - TNBC: PERSEVERE trial in patients with residual disease after neoadjuvant therapy, evaluating genomically directed therapy for patients who are ctDNA positive


PD017-03 and ctDNA MRD monitoring

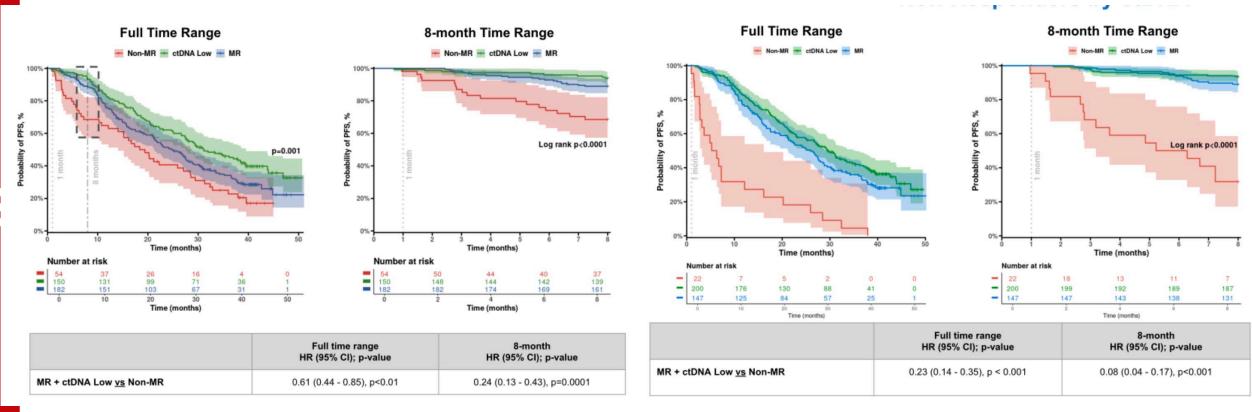
- Relatively short follow up, but adds to a growing body of evidence that ctDNA detection during/after adjuvant therapy in localized breast cancer is highly associated with subsequent metastatic recurrence
- Current challenges: how do we intervene to improve outcomes?
 - Ongoing clinical trials across breast cancer subtypes
 - ER+ disease: DARE trial evaluating switch to fulvestrant/palbociclib if ctDNA positive during adjuvant AI
 - TNBC: PERSEVERE trial in patients with residual disease after neoadjuvant therapy, evaluating genomically directed therapy for patients who are ctDNA positive

Take home: ctDNA MRD testing shows promise in localized breast cancer, but more research is needed to understand the sensitivity/specificity of these assays in larger populations and identify effective interventions for ctDNA positive patients.

circulating tumor DNA – clinical applications

breast cancer on first line AI (PD017-02, Bailleux et al)

- Evaluated 389 patients starting first line AI for metastatic ER+ breast cancer
- ctDNA collected at baseline and 4 weeks on treatment and targeted NGS (Guardant360 – tumor agnostic) performed



- Evaluated 389 patients starting first line AI for metastatic ER+ breast cancer
- ctDNA collected at baseline and 4 weeks on treatment and targeted NGS (Guardant360 – tumor agnostic) performed
- Question: can ctDNA dynamics early on treatment predict clinical response to AI in metastatic breast cancer?

- 372/389 had evaluable baseline and on-treatment samples
- 238 (64%) had detectable ctDNA at least once
- Molecular response defined as a 50% decrease in ctDNA fraction from baseline to 4-week sample

All mutations used to calculate MR

Breast cancer specific genes used to calculate MR

Bailleux et al, SABCS 2022 PD017-02 Patients who did not achieve MR had significantly shorter PFS on first line AI than patients with MR or no detectable ctDNA ("ctDNA low")

PD017-02: ctDNA response as a pharmacodynamic biomarker in advanced ER+ breast cancer

- Highlights the unique potential of liquid biopsy assays for serial monitoring and the development of pharmacodynamic predictors of response
- While only 64% of patients had at least 1 detectable ctDNA sample, the superior PFS of patients with undetectable ctDNA suggests that a negative result (which may reflect tumor burden) has prognostic value as well.

PD017-02: ctDNA response as a pharmacodynamic biomarker in advanced ER+ breast cancer

- Highlights the unique potential of liquid biopsy assays for serial monitoring and the development of pharmacodynamic predictors of response
- While only 64% of patients had at least 1 detectable ctDNA sample, the superior PFS of patients with undetectable ctDNA suggests that a negative result (which may reflect tumor burden) has prognostic value as well.

Take home: ctDNA dynamics shows early promise as biomarker of treatment response in advanced ER+ breast cancer, and with additional validation, this could be developed into a predictive biomarker to identify early endocrine therapy resistance and target those patients for novel treatment approaches.

Summary

Genomic predictors for adjuvant therapy selection in localized ER+ breast cancer:

- Long term outcomes from the TAILORx trial confirmed how we currently use Oncotype DX clinically, and added nuance to our understanding of chemotherapy benefit for premenopausal women with RS 16-25
- Does Breast Cancer Index predict benefit of ovarian function suppression in premenopausal women in the SOFT trial BCI is prognostic in pre-menopausal women, and may be predictive of OFS benefit, though with some caveats requiring additional investigation.

Summary

Genomic predictors for adjuvant therapy selection in localized ER+ breast cancer:

- Long term outcomes from the TAILORx trial confirmed how we currently use Oncotype DX clinically, and added nuance to our understanding of chemotherapy benefit for premenopausal women with RS 16-25
- Does Breast Cancer Index predict benefit of ovarian function suppression in premenopausal women in the SOFT trial BCI is prognostic in pre-menopausal women, and may be predictive of OFS benefit, though with some caveats requiring additional investigation.
- 2. Liquid biopsies for evaluation of endocrine therapy resistance in localized and advanced ER+ breast cancer
 - ctDNA monitoring in a phase II study of adjuvant endocrine therapy with ribociclib for localized ER+ breast cancer
 - ctDNA molecular response and clinical outcomes in advanced ER+ breast cancer on first line AI
 - Highlighted ways that ctDNA is showing promise as a biomarker of treatment response and resistance in localized and metastatic breast cancer, though further study is required to understand how to implement these types of tests clinically

Acknowledgements

• Dr. Wisinski, Dr. Kamaraju, and the WAHO team for the opportunity to share these updates!

