Gastrointestinal Oncology

Nataliya Uboha, MD, PhD, Associate Professor University of Wisconsin, Carbone Cancer Center

Carbone Cancer Center

UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

Disclosure of Conflicts of Interest

Nataliya Uboha, MD, PhD, has the following financial relationships to disclose:

- Consulting: QED, Taiho Inc., Incyte, AstraZeneca, Pfizer, Boston Gene, Helsinn.
- Research Funding: Taiho Inc, Ipsen, EMD Serono.
- Long position holdings: Natera, Exact Sciences.

Outline

- Biomarker Testing
- Immunotherapy Use
 - Pivotal Phase 3 Studies in Advanced Disease
 - Early-Stage Disease
 - MSI-High Tumors
- Targeting Her2 + GEA
- Emerging Biomarkers

Outline

- Biomarker Testing
- Immunotherapy Use
 - Pivotal Phase 3 Studies in Advanced Disease
 - Early-Stage Disease
 - MSI-High Tumors
- Targeting Her2 + GEA
- Emerging Biomarkers

Anatomic & Molecular Heterogeneity

164 esophageal tumors, 359 gastric adenocarcinomas and 36 additional adenocarcinomas at the GEJ EBV: Epstein Barr Virus; CIN: Chromosomal instability; GS: Genomically stable; MSI: Microsatellite unstable.

Nature 2017: 541, 169–175; Nature 2014 Sep 11;513(7517):202-9

Biomarkers in Upper GI Cancers

Current:

- PD-L1 expression
- Her-2 status (IHC and FISH as needed; NGS)
- Microsatellite status (PCR or IHC for MMR protein expression)
- Tumor Mutational Burden
- Next Generation Sequencing (NGS)

Under Investigation:

• Claudin 18.2, FGFR2b

PD-L1 Testing in Upper GI Tumors

PD-L1 tumor positive score (TPS):

% of viable tumor cells with partial or complete membrane staining in at least 100 viable tumor cells examined

PD-L1 combined positive score (CPS):

of PD-L1-positive tumor cells, lymphocytes, and macrophages divided by the total number of viable tumor cells multiplied by 100; at least 100 viable tumor cells must be present.

PD-1 Antibodies:

Pembrolizumab Nivolumab Tislelizumab \rightarrow IHC 22C3 phamDx assay

- \rightarrow IHC 28-8 phamDx assay
- \rightarrow IHC VENTANA SP263 assay

Challenges of PD-L1 Testing and Interpretation

Different antibodies across different studies:

KEYNOTE-590 - Dako 22C3 CPS CheckMate 648 - Dako 28-8 TPS CheckMate 649 - Dako 28-8 CPS and TPS

Different cut-offs in different studies:

(CPS ≥1, 5, or 10%; TPS ≥1%)

Zhou KI et al. Clin Cancer Res. 2020;26(24):6453–6463

Adenocarcinoma vs. Squamous					
TPS ≥1%					
Squamous	49%	Checkmate 648 (N = 970)			
Adenocarcinoma	16%	Checkmate 649 (N = 1581)			

Outline

- Biomarker Testing
- Immunotherapy Use
 - Pivotal Phase 3 Studies in Advanced Disease
 - Early-Stage Disease
 - MSI-High Tumors
- Targeting Her2 + GEA
- Emerging Biomarkers

Current Immunotherapy Approvals for HER2 Negative Esophagogastric Adenocarcinoma (EGA)

- **Nivolumab**: Locally advanced or metastatic EGA in combination with chemotherapy in first-line setting (*CheckMate 649*).
 - FDA: regardless of PD-L1 CPS
 - NCCN: PD-L1 CPS ≥5
- **Pembrolizumab**: Locally advanced or metastatic EGA in combination with chemotherapy in first-line setting (*Keynote 590*).
 - FDA: regardless of PD-L1 CPS
 - NCCN: PD-L1 CPS ≥10
- NO immunotherapy approvals **past first-line.**

CheckMate 649: Phase 3 Global Study of Nivolumab & Chemo vs. Chemo in 1st Line EGA

Key eligibility criteria

- Previously untreated, unresectable, advanced or metastatic gastric/GEJ/ esophageal adenocarcinoma
- No known HER2-positive status
- · ECOG PS 0-1

Stratification factors

- Tumor cell PD-L1 expression (≥ 1% vs < 1%^b)
- Region (Asia vs United States/Canada vs ROW)
- ECOG PS (0 vs 1)
- Chemo (XELOX vs FOLFOX)

^aClinicalTrials.gov number, NCT02872116; ^b< 1% includes indeterminate tumor cell PD-L1 expression; determined by PD-L1 IHC 28-8 pharmDx assay (Dako); ^cAfter NIVO + chemo arm was added and before new patient enrollment in the NIVO1+IPI3 group was closed; ^dUntil documented disease progression (unless consented to treatment beyond progression for NIVO + chemo), discontinuation due to toxicity, withdrawal of consent, or study end. NIVO is given for a maximum of 2 years; ^eOxaliplatin 130 mg/m² IV (day 1) and capecitabine 1000 mg/m² orally twice daily (days 1–14); ^fOxaliplatin 85 mg/m², leucovorin 400 mg/m², and FU 400 mg/m² IV (day 1) and FU 1200 mg/m² IV daily (days 1–2); ^gBICR assessed; ^hTime from concurrent randomization of the last patient to NIVO + chemo vs chemo to data cutoff.

• Janjigian YY et al. *Lancet*. 2021;398(10294):27-40; Moehler M et al. ESMO 2020. Abstract LBA6.

CheckMate 649: Statistical Considerations

^aHierarchical testing of OS in the PD-L1 CPS \geq 5 population, followed by all randomized patients, is planned for the final analysis.

Janjigian YY et al. Lancet. 2021;398(10294):27-40; Moehler M et al. ESMO 2020. Abstract LBA6.

Overall Survival and Progression Free Survival Results: CPS ≥5

• Janjigian YY et al. *Lancet*. 2021;398(10294):27-40; Moehler M et al. ESMO 2020. Abstract LBA6.

Overall Survival Results: CPS ≥1 and All Randomized

• Janjigian YY et al. Lancet. 2021;398(10294):27-40; Moehler M et al. ESMO 2020. Abstract LBA6.

 Checkmate 649 met both primary endpoints and ALL <u>formally tested</u> secondary endpoints

 4/16/2021: FDA approved nivolumab + chemotherapy for ALL patients with advanced esophageal, GEJ, and gastric adenocarcinoma, <u>regardless</u> of PD-L1 expression

CheckMate 649: Subgroup Analyses

Population*		Median overa monf	III survival, ths		Unstratified hazard ratio	Interaction test	
	Population	Nivolumab plus chemotherapy	Chemotherapy alone		for death (95% CI) p value		
	Overall (N=1581)	13.8	11.6	-+-	0.79 (0.70–0.89)		
	PD-L1 CPS <1 (n=265)	13·1	12·5	_	0.92 (0.70–1.23)		Overall Survival
	PD-L1 CPS ≥1 (n=1296)	14.0	11.3	-	0.76 (0.67–0.87)	0.2041	
	PD-L1 CPS <5 (n=606)	12.4	12.3	-	• 0·94 (0·78–1·13)]
	PD-L1 CPS ≥5 (n=955)	14.4	11.1	-	0.70 (0.60–0.81)	0.0107†	-
			Nivolumab plus ch	0·5 emotherapy ◀ better	1 2 4 Chemotherapy alone better		
	Densitetient	Objective res	sponse rate, %		Unweighted objective		
	Population‡§	Nivolumab plus chemotherapy	Chemotherap alone	У	response rate difference, % (95% CI)	
	Overall (N=1211)	58	46		- _	12 (6–17·5)	
	PD-L1 CPS <1 (n=178)	51	41			9 (–5 to 23)	Objective Response Rate
	PD-L1 CPS ≥1 (n=1019)	60	46		- _	13 (7–19)	
	PD-L1 CPS <5 (n=428)	55	46		-	9 (–0·6 to 18)	
	PD-L1 CPS ≥5 (n=769)	60	45		_	15 (7· 5– 21)	_
				30	25 20 15 10 5 0 -5 -10	-20	
				50	Nivolumab plus chemotherapy	apy alone	

NCCN category 1 recommendation: Nivolumab should be reserved for those with PD-L1 CPS ≥ 5 tumors

Janjigian YY et al. Lancet. 2021;398(10294):27-40; Moehler M et al. ESMO 2020. Abstract LBA6.

KEYNOTE 590: Study Design (Esophageal and GEJ Study)

KEYNOTE 590 OS and PFS: All Patients

Overall Survival

Progression Free Survival

Sun et al, Lancet 2021 (398):759-71

KEYNOTE 590: OS in Pre-specified Subgroups

Sun et al, Lancet 2021 (398):759-71

5/22/2021: FDA approved pembrolizumab + chemotherapy for patients with advanced esophageal and GEJ cancers, <u>regardless</u> of PD-L1 expression **BUT** It is more active against **PD-L1 +** Tumors

How Should We Approach Tumors with Low PD-L1 CPS?

Low Programmed Death-Ligand 1–Expressing Subgroup Outcomes of First-Line Immune Checkpoint Inhibitors in Gastric or Esophageal Adenocarcinoma

Joseph J. Zhao¹; Dominic Wei Ting Yap¹; Yiong Huak Chan, PhD²; Benjamin Kye Jyn Tan¹; Chong Boon Teo¹; Nicholas L. Syn, MBBS¹; Elizabeth C. Smyth, MD³; Yu Yang Soon, MBBS (Hons)⁴; and Raghav Sundar, MBBS, PhD^{1.5,6,7,8}

NO ACTIVITY OF IO AGENTS

Zhao et al, Journal of Clinical Oncology 2021(40):392-402

Single-Agent Anti-PD1/PD-L1 in EGA in Later Lines

3 rd Line+		OS	ORR	ORR in PDL1+
Attraction-2	Nivo vs. Placebo	5.26 vs. 4.14 mo*	11.2%	Benefit regardless of PD-L1 status (TPS)
Keynote-059	Pembro	5.6 mo	11.6%	15.5% in CPS ≥1
Javelin 300	Avelumab vs. Chemo	4.6 vs. 5.0 mo	2.2%	4.3% in TPS ≥1
2 nd Line		OS	ORR	ORR in PDL1+
Keynote 181**	Pembro vs. chemo	6.3 vs 6.9 mo***	3.3% in PD-L1 CPS <10	18% in PD-L1 CPS ≥10
Keynote 061	Pembro vs. paclitaxel	9.1 vs. 8.3 mo	16% In CPS ≥1	<mark>24%</mark> in PD-L1 CPS ≥10

* Statistically significant difference; ** Data for adenocarcinoma, PDL1 CPS ≥ 10; *** PDL1 CPS ≥ 10 tumors

Limited Activity
Higher responses in PDL1 + tumors
But results are largely irrelevant since studies enrolled IO naive patients

Chen L-T et al. *Gastric Cancer.* 2020;23(3):510-519; Fuchs CS et al. *JAMA Oncol.* 2018;4(5):e180013; Bang Y-J et al. *Ann Oncol.* 2018;29(10):2052-2060; Fuchs CS et al. ASCO 2020. Abstract 4503.

Immunotherapy for Advanced EGA

	Regimen	Biomarker Selection	Study
1 St line	Pembrolizumab plus chemotherapy (preferably with cisplatin) for E/GEJ	Definitely for PD-L1 CPS ≥10 FDA approved for all	KEYNOTE-590
1 st line	Nivolumab plus chemotherapy	Definitely for PD-L1 CPS≥5 No benefit for PD-L1 CPS < 5 <i>FDA approved for all</i>	CheckMate 649
2 nd line+	No approved IO agents	Not applicable	KEYNOTE-181 KEYNOTE-061 Javelin 300

Current Immunotherapy Approvals for ESCC

• Pembrolizumab:

- Locally advanced or metastatic SCC in combination with chemotherapy in first-line setting (*Keynote 590*)

- Advanced ESCC with PD-L1 CPS ≥10 with disease progression after one or more prior lines of systemic therapy (*Keynote-181*)

• Nivolumab:

- Locally advanced or metastatic SCC in combination with chemotherapy in first-line setting (*Checkmate 648*)

- Advanced ESCC after prior fluoropyrimidine- and platinum-based chemotherapy(*Attraction-3*)

• Ipilimumab:

- Locally advanced or metastatic combination with **nivolumab** in first-line setting (*Checkmate 648*)

Current Immunotherapy Approvals for ESCC

• Pembrolizumab:

- Locally advanced or metastatic SCC in combination with chemotherapy in first-line setting (*Keynote 590*)

- Advanced ESCC with PD-L1 CPS ≥10 with disease progression after one or more prior lines of systemic therapy (*Keynote-181*)

• Nivolumab:

- Locally advanced or metastatic SCC in combination with chemotherapy in first-line setting (*Checkmate 648*)

- Advanced ESCC after prior fluoropyrimidine- and platinum-based chemotherapy(*Attraction-3*)

• Ipilimumab:

- Locally advanced or metastatic combination with **nivolumab** in first-line setting (*Checkmate 648*)

CheckMate 648: Phase 3 Global Study of Nivolumab & Chemo vs. Nivolumab & Ipilimumab vs. Chemo in 1st Line ESCC

• At data cutoff (January 18, 2021), the minimum follow-up was 12.9 months^g

^aClinicalTrials.gov. NCT03143153; ^b< 1% includes indeterminate tumor cell PD-L1 expression; determined by PD-L1 IHC 28-8 pharmDx assay (Dako); ^cEast Asia includes patients from Japan, Korea, and Taiwan; ^dFluorouracil 800 mg/m² IV daily (days 1-5) and cisplatin 80 mg/m² IV (day 1); ^eUntil documented disease progression (unless consented to treatment beyond progression for NIVO + IPI or NIVO + chemo), discontinuation due to toxicity, withdrawal of consent, or study end. NIVO is given alone or in combination with IPI for a maximum of 2 years; ^fPer blinded independent central review (BICR); ^gTime from last patient randomized to clinical data cutoff.

3

CheckMate 648: Efficacy Results

lpi + Nivo vs. Chemo

Chemo+ Nivo vs. Chemo

Select Phase 3 Studies with IO Agents in Later Lines in Advanced ESCC

However, patients were <u>immunotherapy naïve</u> in these studies. As such, these results are largely irrelevant when IO agents are used in 1st line setting.

Kato K et al. Lancet Oncol. 2019;20(11):1506-1517; Shen L et al. ASCO 2021. Abstract 4012; Chin K et al. ASCO GI 2021. Abstract 204.

Approach to Advanced ESCC

	Therapy	Biomarker Selection	Study
	Pembrolizumab plus chemotherapy	Definitely for PD-L1 CPS ≥10 FDA approved for all	KEYNOTE-590
1 st line Ni Ni (if n	Nivolumab plus chemotherapy	None Higher activity in PDL1 TPS >1%	CheckMate 648
	Nivolumab plus ipilimumab (if not a chemotherapy candidate)	None Higher activity in PDL1 TPS >1%	CheckMate 648
2nd line	Nivolumab	None (No prior IO therapy)	ATTRACTION-3
Z ^{III} line+	Pembrolizumab	PD-L1 CPS ≥ 10 (No prior IO therapy)	KEYNOTE-181

Outline

- Biomarker Testing
- Immunotherapy Use
 - Pivotal Phase 3 Studies in Advanced Disease
 - Early-Stage Disease
 - MSI-High Tumors
- Targeting Her2 + GEA
- Emerging Biomarkers

Adjuvant Nivolumab Tackles Systemic Recurrences

CheckMate 577: Study Design

n = 532

n = 262

29% SCC

72% PDL1 TPS <1%

Nivolumab

240 mg Q2W × 16 weeks

then 480 mg Q4W

Placebo

 $Q2W \times 16$ weeks

then Q4W

Total treatment duration

of up to 1 year^d

Primary endpoint:

Secondary endpoints:

OS rate at 1, 2, and

DFS^e

OS^f

3 years

• CheckMate 577 is a global, phase 3, randomized, double-blind, placebo-controlled trial^a

Key eligibility criteria

- Stage II/III EC/GEJC
- Adenocarcinoma or squamous cell carcinoma
- Neoadjuvant CRT + surgical resection (R0,^b performed within 4-16 weeks prior to randomization)
- Residual pathologic disease
 - ≥ ypT1 or ≥ ypN1
- ECOG PS 0-1

Stratification factors

- Histology (squamous vs adenocarcinoma)
- Pathologic lymph node status (\geq ypN1 vs ypN0)
- Tumor cell PD-L1 expression (≥ 1% vs < 1%^c)
- Median follow-up was 24.4 months (range, 6.2-44.9)^g
- Geographical regions: Europe (38%), US and Canada (32%), Asia (13%), rest of the world (16%)

N = 794

R

2:1

Adjuvant Nivolumab Prolongs Disease Free Survival

Wontins					
	Nivolumab N=155	Placebo N=75			
Median DFS	22.4 mo	11.0 mo			
Median DFS SCC	29.7 mo	11.1 mo			
	HR 0.61 (95% CI, 0.42-0.88)				

5/20/2021: FDA approves 1 year of adjuvant nivolumab for patients with residual disease at resection post chemoRT.

Ireatment Related Adverse Events					
	Nivolumab	Placebo			
AEs Leading to treatment discontinuation	9%	3%			
Serious adverse events	8%	3%			
Any grade ≥3 TRAE	13%	6%			
Grade ≥3 fatigue	1%	<1%			

Ongoing Select IO Trials for Early-Stage Upper GI Cancers

Study Name and/or Number	Study Design	Planned # of Patients	Geography
KEYNOTE 585 NCT03221426	Double-blind study of perioperative pembrolizumab vs. placebo plus chemotherapy in resectable gastric and GEJ adenocarcinoma	1007	Global
MATTERHORN NCT04592913	Double-blind, placebo-controlled study of perioperative FLOT chemotherapy with durvalumab vs. placebo in resectable gastric or GEJ adenocarcinoma	900	Global
KEYNOTE-975 NCT04210115	Double-blind, placebo-controlled study of pembrolizumab vs. placebo in esophageal carcinoma treated with definitive chemoradiation	600	Global
EA2174 NCT03604991	Peri-operative Nivolumab and Ipilimumab in patients with locoregional esophageal and gastroesophageal junction adenocarcinoma treated with neoadjuvant chemoradiation	278	USA
SKYSCRAPER-07 NCT04543617	Double-blind, placebo-controlled study of atezolizumab with or without tiragolumab (anti-TIGIT antibody) vs. placebo in unresectable ESCC after definitive chemoradiation	750	GLobal

Outline

- Biomarker Testing
- Immunotherapy Use
 - Pivotal Phase 3 Studies in Advanced Disease
 - Early Stage Disease
 - MSI-High Tumors
- Targeting Her2 + GEA
- Emerging Biomarker

JAMA Oncology | Brief Report

Combination

Chemotherapy 250

Assessment of Pembrolizumab Therapy for the Treatment of Microsatellite Instability-High Gastric or Gastroesophageal Junction Cancer Among Patients in the KEYNOTE-059, **KEYNOTE-061**, and **KEYNOTE-062** Clinical Trials

Chao et al, JAMA Oncol. 2021;7(6):895-902

Combination

Chemotherapy

NEONIPIGA: Study Design

Primary endpoint: path CR Rate

Patients with resectable MSI-H/dMMR EGA cT2-T4, Nx, Mo

Presented by Thierry Andre et al, GI ASCO 2022

Pathological Outcomes

Stage Nonmetastatic patient Metastatic patient

Andre et al, JCO 2022; https://doi.org/10.1200/JCO.22.00686

Remaining Questions about MSI-H/dMMR Tumors

- Can we move IO into first line and omit chemotherapy in the treatment of advanced disease?
- Can we omit chemotherapy, radiation and/or surgery in the treatment of early stage disease?

Outline

- Biomarker Testing
- Immunotherapy Use
 - Pivotal Phase 3 Studies in Advanced Disease
 - Early Stage Disease
 - MSI-High Tumors
- Targeting Her2 + GEA
- Emerging Biomarkers

HER2+ Upper GI Adenocarcinomas

- 15-20% of gastroesophageal adenocarcinomas (GEA) are HER2+.
- HER2 testing is indicated for locally advanced and inoperable, recurrent, or metastatic tumors.
- No data to support targeting Her2 in early stage disease.
- In advanced disease, HER2 expression can change over time.
- Concurrent alterations in other signaling cascades and changes in HER2 expression changes can affect therapeutic options.

TOGA Trial: Trastuzumab in 1st LINE

Other Attempts to Target Her2 in GEA

	Study	N	Treatment Arms	OS (mo)	HR p	
1 st Line-	TOGA ¹	584	5FU/cis 5FU/cis + Trastuzumab	11.1 13.8	HR 0.74 p < 0.001	\checkmark
	LOGIC ²	545	XELOX XELOX + Lapatinib	10.5 12.2	HR = 0.91 p = 0.34	\bigcirc
	JACOB ³	780	5FU/cis + trastuzumab 5FU/cis + trastuzumab + pertuzumab	14.2 17.5	HR = 0.84 p = 0.0565	S
	TyTAN ⁴	261	Paclitaxel Paclitaxel + lapatinib	8.9 11.0	HR = 0.54 p = 0.21	
2 nd Line-	GATSBY ⁵	415	T-DM1 Taxane	7.9 8.6	HR = 1.14 p =0.31	\mathbf{O}
	T-ACT ⁶ (Phase 2)	91	Paclitaxel Paclitaxel + Trastuzumab	9.95 10.20	HR = 1.23 p = 0.199	Ŏ

¹Bang YJ, et al. Lancet. 2010;376:687-697, ²Hecht et al, J Clin Oncol 2016 Feb 10;34(5):443-51; ³Tabernero et al, Lancet Oncol. 2018 Oct;19(10):1372-1384; ⁴Satoh et al, J Clin Oncol 2014 Jul 1;32(19):2039-49; ⁵Thuss-Patience et al, Lancet Oncol. 2017 May;18(5):640-653; ⁶Makiyama et a, J Clin Oncol. 2020 10;38(17):1919-1927

Tumor Heterogeneity And Evolution: A Challenge for Precision Oncology

Changes in Her2 Expression Over Time on Anti-Her2 Therapy

14/43 patients with loss of Her2 expression after trastuzumab

Janjigian et al, Cancer Discovery 2018 (8): 49-58

Sukawa et al, Abstr 4029, 2018 ASCO Meeting Seo et al, Gastric Cancer 2019(22): 527-535

Haffner et al, JCO 2021(39): 1468-1478

Trastuzumab Deruxtecan: Mechanism of Action

DESTINY Gastric-01: Study Design

DESTINY-Gastric-01: Efficacy Results

DESTINY-Gastric01: Safety Results

- Grade ≥3 AEs occurred in 85.6% of T-DXd patients versus 56.5% with PC
 - The most common were decreased neutrophil count (51.2% vs 24.2%), anemia (38.4% vs 22.6%), and decreased white blood cell count (20.8% vs 11.3%)
- 16 patients (12.8%) had T-DXd-related ILD/pneumonitis, as determined by an independent adjudication committee
 - There were 13 grade 1 or 2, 2 grade 3, 1 grade 4, and no grade 5 events
 - There were 4 ILD/pneumonitis events since the primary analysis; 1 grade 1 and 3 grade 2
 - Among the 16 total ILD/pneumonitis events, the median time to first onset was 102.5 days (range, 36-638)
 - There were no ILD/pneumonitis events in the PC arm
- There was 1 T-DXd-related death from pneumonia (non-ILD), as reported in the primary analysis
- · There were no AE-related deaths in the PC arm

		T-DXd n = 125			PC Overa n = 62	all
		Grade			Grade	
Preferred Term, %	Any	3	4	Any	3	4
Neutrophil count						
decreased ^b	64.8	38.4	12.8	35.5	16.1	8.1
Nausea	63.2	5.6	0	46.8	1.6	0
Decreased appetite	60.8	16.8	0	45.2	12.9	0
Anemiac	57.6	38.4	0	30.6	21.0	1.6
Platelet count						
decreased ^d	40.0	9.6	1.6	6.5	1.6	1.6
White blood cell count						
decreased ^e	38.4	20.8	0	35.5	8.1	3.2
Malaise	34.4	0.8	0	16.1	0	0
Diarrhea	32.8	2.4	0	32.3	1.6	0
Vomiting	26.4	0	0	8.1	0	0
Pyrexia	24.8	0	0	16.1	0	0
Constipation	24.8	0	0	24.2	0	0
Lymphocyte count						
decreased ^f	23.2	7.2	4.8	3.2	0	1.6
Alopecia	22.4	0	0	14.5	0	0
Fatigue	21.6	7.2	0	24.2	3.2	0

AE, adverse event; ILD, interstitial lung disease; PC, physician's choice; T-DXd, trastuzumab deruxtecan; TEAE, treatment-emergent AE.

No additional TEAEs were observed in ≥20% of patients receiving PC. *There were no grade 5 events. ^bIncludes preferred terms "neutrophil count decreased" and "neutropenia." ^dIncludes preferred terms "between terms "leukopenia." ^dIncludes preferred terms "leukopenia." ^dIncludes prefered terms "leukopenia." ^dInclud

FDA Approval

1/15/2021: FDA approved fam-trastuzumab deruxtecan-nxki (Enhertu, Daiichi Sankyo) for adult patients with locally advanced or metastatic HER2-positive gastric or gastroesophageal (GEJ) adenocarcinoma who have received a prior trastuzumab-based regimen.

Patient Selection for Locally Advanced or Metastatic Gastric Cancer Select patients with locally advanced or metastatic gastric cancer based on HER2 protein overexpression or HER2 gene amplification. <u>Reassess HER2 status</u> if it is feasible to obtain a new tumor specimen after prior trastuzumab-based therapy and before treatment with ENHERTU.

DESTINY-Gastric 02: Study Design

- DESTINY-Gastric02 is the first study focused only on second-line T-DXd monotherapy in Western patients with HER2+ gastric/GEJ cancer who have progressed on a trastuzumab-containing regimen
 - It is the follow-on study to DESTINY-Gastric01, which evaluated T-DXd third-line or later in Asian patients¹
- Patients were enrolled in Europe (Belgium, Great Britain, Italy, Spain) and the United States (data cutoff: April 9, 2021)

2nd line study; Western patients

Her2 status confirmation after progression

Presented by Eric Van Cutsem, MD at ESMO 2021

DESTINY-Gastric 02: Efficacy and Safety Results

ORR 38%; DOR 8.1 months; DCR 81%; PFS 5.5 months

Ongoing Studies with T-DXd

• **DESTINY-Gastric-04** (NCT04704934):

Phase 3 Study of Trastuzumab Deruxtecan vs. Ramucirumab & Paclitaxel in patients With HER2+ Advanced G/GEJ adenocarcinoma that has progressed on 1 line of therapy.

• **DESTINY-Gastric-03 (**NCT04379596):

Phase 1/2 study of Trastuzumab Deruxtecan monotherapy and combinations (chemo, IO) in advanced HER2+ gastric cancer.

Immunotherapy for Her2+ GEA: Keynote 811

^aTrastuzumab dose: 6 mg/kg IV Q3W following an 8 mg/kg loading dose. FP dose: 5-fluorouracil 800 mg/m² IV on D1-5 Q3W + cisplatin 80 mg/m² IV Q3W. CAPOX dose: capecitabine 1000 mg/m² BID on D1-14 Q3W + oxaliplatin 130 mg/m² IV Q3W.

BICR, blinded independent central review; CPS, combined positive score (number of PD-L1-staining cells [tumor cells, lymphocytes, macrophages] divided by the total number of viable tumor cells, multiplied by 100).

Protocol-Specified First Interim Analysis:

Timing: when the first **260** participants reach \geq 8.5 months of follow-up

Objective: Evaluate overall response rate (ORR)

Superiority boundary: p=0.002 (one sided)

Data cut off 6/17/2020 (434 participants enrolled)

Presented by Janjigian et al, ASCO 2021

KEYNOTE 811: Interim Analysis Results

	Pembro (N=133)	Placebo (N=131)
ORR	74.4%	51.9% p=0.00006
CR	11 %	4%
DCR	96.2%	89.3%
DOR	10.6 mo	9.5 mo

ORR: objective response rate; CR: complete response; DCR: disease control rate; DOR: duration of response

5/5/2021: pembrolizumab received accelerated FDA approval in this setting

- Final analysis pending.
- Does PD-L1 expression matter?
- Benefit from IO beyond 1st line in Her2+ tumors?

Outline

- Biomarker Testing
- Immunotherapy Use
 - Pivotal Phase 3 Studies in Advanced Disease
 - Early Stage Disease
 - MSI-High Tumors
- Targeting Her2 + GEA
- Emerging Biomarkers

Claudin 18.2

- Member of claudin family of proteins
- Component of tight junctions
- Expression in many cancers
- Not expression in healthy tissues, except for stomach mucosa

FAST: A randomised phase II study of **zolbetuximab (IMAB362)** plus EOX vs EOX alone for first-line treatment of advanced CLDN18.2 positive gastric and gastro-oesophageal adenocarcinoma

Sahin et al, Ann Oncol. 2021 May;32(5):609-619

FGFR2: Overexpression or Amplification

Key Eligibility Criteria

Geographic region

- Single dose of FOLFOX while screening
- Prior perioperative chemotherapy

Primary endpoint Secondary endpoints Response rate

Statistical Plan

- Trial initially designed as registrational Phase 3 (n=548) with 2-sided a 0.05 Amended after enrolling n = 155 to a proof-of-concept Phase 2 with pre-specified statistical assumptions of:
- · Hierarchical sequential testing: PFS, then OS/ORR
- ≥84 events to demonstrate benefit at a HR≤0.76 for PFS at 2-sided α of 0.2

Addition of Bemarituzumab Showed a +5.7 Month Improvement in Median OS

*ITT = includes 149 patients with IHC 2+/3+ and 6 with IHC <2+ or not available who were enrolled based on ctDNA alone. NR, not reached.

Median Follow-up 12.5 months

*Based on February, 28th 2021 data cut

Presented by Catennacci et al, ASCO 2021

Summary and Future Directions

- PD-L1 CPS, MSI/dMMR, Her2 are established biomarkers in upper GI cancers.
- Treatment selection utilizing these biomarkers results in better efficacy.
- There are a number novel agents and biomarkers in development.
- Further validation is needed.
- Potential for biomarker overlap in the same tumor.
- We will need to learn how to prioritize, combine and sequence treatments based on efficacy and toxicity profiles.

