Integration of Multidisciplinary Team in Diagnosing Lynch Syndrome and Early Surveillance

Sonya Inderbitzin-Fischer, Gary Monroe, Samantha Hall, Mary Adamec, Aulakh Sonikpreet

Objectives

- Review Lynch Syndrome mismatch repair gene variants
- Discuss the integration of hereditary cancer syndrome screening recommendations into clinical practice
- Discuss the utilization of clinical history and germline mutations in determining appropriate surveillance strategies

No disclosures or conflicts-of-interest

54-year-old Female

- Surveillance with WVU Oncology for PMH of Stage IIA Colon Cancer
- PMH of endometrial adenocarcinoma
- Previously documentation and genetic testing consistent with a diagnosis of Lynch syndrome
- Family history is negative for malignancy. Patient's daughter has been diagnosed with Lynch Syndrome by a genetic counselor

Social history is negative for tobacco or alcohol use
 WVUMedicine

April 2022 – Stage IA Grade I Endometrioid adenocarcinoma (pT1aN0)

		- FINAL DIAGNOSIS
Final Pathologic D	iagnosis:	SEVEN REACTIVE LYMPH NODES, NEGATIVE FOR MALIGNANCY (0/7).
A. Endometrial Curettings	s: Endometrioid Adenocarcinoma, FIGO Grade 1.	D. UTERUS, CERVIX, BILATERAL ADNEXA; TOTAL LAPAROSCOPIC HYSTERECTOMY AND
B. Endocervical Curetting	s: Minute Fragments Of Benign Appearing Endocervical Mucosa.	BILATERAL SALPINGO-OOPHORECTOMY: CHRONIC INACTIVE CERVICITIS. NABOTHIAN CYSTS. PROLIEERATIVE ENDOMETRIUM WITH FOCAL ATYRICAL COMPLEY HYDERDI ASIA
bk/4/4/2022	***Electronically Signed Out By*** Busaina Khalil, MD	ADENOMYOSIS.
	Peer Review Pathologist(s): Michael M Yousef, MD	BILATERAL OVARIES WITH NO SPECIFIC PATHOLOGIC CHANGES. BILATERAL FALLOPIAN TUBES WITH BENIGN PARATUBAL CYSTS, SEE COMMENT.
	· · · · · · · · · · · · · · · · · · ·	COMMENT: The patient's history of endometrial curetting showing FIGO grade 1 endometrioid adenocarcinoma of the endometrium is noted (diagnosis made at Wheeling Hospital, Accession #: S22-3580). In this hysterectomy specimen, the endometrium is entirely submitted for histologic examination. No residual adenocarcinoma is seen. Outside slides will be reviewed; the results including a cancer case summary will be issued in an addendum report. Clinical correlation is recommended.
011-1 P14-	March 2022	E. LYMPH NODES, LEFT PERIAORTIC, LYMPHADENECTOMY:

April 2022 – Stage IA Grade I Endometrioid adenocarcinoma (pT1aN0)

Addendum Report

Addendum Explanation Complete loss

PMS-2

Addendum Explanation

Summary of Results: Findings strongly suggestive of a germline related endometrial carcinoma associated with Lynch Syndrome (see comment).

Summary of Results: Findings strongly suggestive of a germline related endometrial carcinoma associated with Lynch Syndrome (see comment).

Comment: This tumor shows deficiency of PMS2 by ImmunohIstochemIstry and microsatellite instability by PCR testing. Deficient PMS2 function is strongly suggestive of a germline-related mutation which is associated with Lynch Syndrome. Genetic counseling is recommended followed by a dermine sequencing//analysis of PMS2 to assess for definitive diagnosis of Lynch Syndrome. Consider MLH1 mutation analysis if PMS2 is negative for mutations. Patient informed consent is required for genetic analysis. Germline mutation analysis is performed at integrated Oncology and peripheral blood is required for testing.

See report signed by Suzanne Martin, M.D. at Accupath Diagnostic Laboratories, Inc.

DNA Mismatch Repair Protein Analysis by IHC (Integrated Oncology Reference #: BC22-001101).

DIAGNOSIS:

These results show absent expression of the mismatch repair protein PMS2 and are suggestive for a deficient DNA mismatch repair function, which is often associated with microsatellite instability. A MSI assay by PCR is currently pending (see case BMM22-000528). Deficient PMS2 function is strongly suggestive of a germline-related mutation which is associated with Lynch Syndrome. Genetic counseling is recommended followed by a germline sequencing/analysis of PMS2 to assess for definitive diagnosis of Lynch Syndrome. Consider MLH1 mutation analysis is PMS2 is negative for mutations. Patient informed consent is required for genetic analysis. Germline mutation analysis is performed at integrated Oncology and peripheral blood is required for testing.

Immunohistochemistry:

Antibody:	Results:
MLH-1	Preserved (intac
MSH-2	Preserved (intac
MSH-6	Preserved (intac

See report signed by Suzanne Martin, M.D. at Accupath Diagnostic Laboratories, Inc.

Detection of Microsatellite Instability by PCR (Integrated Oncology Reference #: BMM22-000528).

INTERPRETATION: These results show high frequency microsatellite stability (MSI-H).

Result:
Unstab
Unstab
Stable
Unstab
Stable

Instability is reported as either high (MSI-H) or low (MSI-L) or stable (MSS) dependent upon the number of markers analyzed that show instability. The reference range for instability is interpreted as follows:

	MSI-H	MSI-L	MSS
Markers show instability	≥2	1 of 5	0 of 5

ungs strongly suggestive of a germline related endometrial carcinoma associated with Lynch Syndrome COMPANY AND A DESCRIPTION OF A DESCRIPTI

Summary Comment

This tumor shows deficiency of PMS2 by immunonistochemistry and microsatellite instability by PCR testing. Deficient PMS2 function is strongly suggestive of a germline-related mutation which is associated with Lynch Syndrome. Genetic counseling is recommended followed by a germline sequencing /analysis of PMS2 to assess for definitive diagnosis of Lynch Syndrome. Consider MLH1 mutation analysis if PMS2 is negative for mutations. Patient informed consent is required for genetic analysis. Germline mutation analysis is performed at Integrated Oncology and peripheral blood is required for testing.

Pembrolizumab is indicated for the treatment of adult and pediatric patients with unresectable or metastatic, microsatellite instability-high (MSI-H) or mismatch repair deficient solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options.

Electronically Signed by Suzanne Martin, M.D. at 0910 ET on 05/15/2022 at Accupath Diagnostic Laboratories, Inc.

Suzanne Martin, M.D. Pathologist

October 2022 – Stage IIA Colon cancer (pT3pN0) of the ascending colon

Final Diagnosis

Right Colon And Appendix: Moderately Differentiated Adenocarcinoma Invading Through

Muscularis Propria Focally Into Surrounding Adipose Tissue.

All margins are uninvolved by carcinoma.

Nine Lymph Nodes, Negative For Carcinoma (0/9).

Appendix With Mild Acute Appendicitis And Fibrofatty Obliteration Of The Tip. See synoptic report for details.

TUMOR

Tumor Site	Ascending colon
Histologic Type	Adenocarcinoma
Histologic Grade	G2, moderately differentiated
Tumor Size	Greatest dimension (Centimeters): 5.2 cm
Tumor Extent	Invades through muscularis propria into pericolorecta tissue
Macroscopic Tumor Perforation	Not identified
Lymphovascular Invasion	Not identified
Perineural Invasion	Not identified
Treatment Effect	No known presurgical therapy
MARGINS	
Margin Status for Invasive Carcinoma	All margins negative for invasive carcinoma
Closest Margin(s) to Invasive Carcinoma	Distal

5.6 cm

		FINAL DI	AGNOSIS -	
RIGHT COL	ON AND APPENDIX:			
PMS2:	LOSS OF EXPRESS	SION		
MLH1: EX	PRESSED			
MSH2:	EXPRESSED			
MSH6:	EXPRESSED			
SEE COMME	NTS			

COMMENTS:

Abnormal loss of immunohistochemical expression of PMS2 observed. This pattern is most commonly seen with PMS2 deficiency. Immunohistochemical expression of MLH1, MSH2 and MSH6 was detected. Control tissues showed adequate staining for all four markers.

MICROSATELLITE INSTAB-MSI POSITIVE

Comment The DNA demonstrated a high frequency of microsatellite instability (MSI-H): three of the five markers showed instability. Germline mutation analysis for the mismatched repair genes is recommended.

WVUMedicine

Distance from Invasive Carcinoma to Closest Margin

October 2022 – Stage IIA Colon cancer → CARIS SEPT 2023

Results with Therapy Associations

BIOMARKER	METHOD			THERAPY	THERAPY ASSOCIATION		
Mismatch Bonair			d		dostarlimab, pembrolizumab	Level 1	
Status	IHC	Protein	Deficient (Loss)	BENEFIT	nivolumab, nivolumab/ipilimumab combination	Level 2	
MSI	Seq	DNA-Tumor	High	BENEFIT	nivolumab, nivolumab/ipilimumab combination, pembrolizumab	Level 2	
тмв	Seq	DNA-Tumor	High, 20 mut/Mb	BENEFIT	pembrolizumab	Level 2	
KRAS	Seq	DNA-Tumor	Pathogenic Variant Exon 4 p.K117N	LACK OF BENEFIT	cetuximab, panitumumab	Level 2	

Biomarker reporting classification: Level 1 – Companion diagnostic (CDx); Level 2 – Strong evidence of clinical significance or is endorsed by standard clinical guidelines; Level 3 – Potential clinical significance. Bolded benefit therapies, if present, highlight the most clinically significant findings.

Genes Tested with Pathogenic or Likely Pathogenic Alterations

Gene					Exon		Variant Frequency %
PMS2	Seq	DNA-Tumor	Pathogenic Variant	c.705+1G>A	6	c.705+1G>A	81
PPP2R1A	Seq	DNA-Tumor	Pathogenic Variant	p.R183W	5	c.547C>T	26
DTEN	Seq	DNA-Tumor	Pathogenic Variant	p.L57fs	3	c.170delT	12
PTEN	Seq	DNA-Tumor	Pathogenic Variant	p.K267fs	7	c.800delA	14

Unclassified alterations for DNA sequencing can be found in the MI Portal. Formal nucleotide nomenclature and gene reference sequences can be found in the Appendix of this report.

Immunohistochemistry Results

Biomarker			
ERBB2 (Her2/Neu)	Negative 0	MSH6	Intact nuclear expression
Mismatch Repair Status	Deficient (Loss)	PD-L1 (SP142)	Negative 0%
MLH1	Intact nuclear expression	PMS2	Loss of nuclear expression
MSH2	Intact nuclear expression	PTEN	Positive 1+, 60%

Cancer-Type Relevant Biomarkers

Biomarker	Method		Result	Biomarker			
		DNA-Tumor	Pathogenic Variant	RET	Seq	RNA-Tumor	Fusion Not Detected
РІКЗСА	Seq	5.44 T	Variant of Uncertain	EGER	CNA-Seq	DNA-Tumor	Amplification Not Detected
		DNA-Tumor	Exon 8 p.P458R		Seq	DNA-Tumor	Mutation Not Detected
		DNA-Tumor	Pathogenic Variant Exon 3 p.L57fs Pathogenic Variant Exon 7 p.K267fc	ERBB2 (Her2/Neu)	IHC	Protein	Negative 0
	Seq				CNA-Seq	DNA-Tumor	Amplification Not
DTEN		DNA-Tumor			entrood		Detected
PTEN	IHC	Protein	Positive 1+, 60%	KRAS	CNA-Seq	DNA-Tumor	Amplification Not Detected
	CNA-Seq	DNA-Tumor	Deletion Not Detected	101	6 m m	DIM T	Variant of Uncertain
0015		DNA-Tumor	Mutation Not Detected	NF1	Seq	DINA-TUMOR	Exon 18 p.M693T
BRAF	Seq	RNA-Tumor	Fusion Not Detected	NRAS	Seq	DNA-Tumor	Mutation Not Detected
NTRK1/2/3	Seq	RNA-Tumor	Fusion Not Detected				

Genomic Signatures

Biomarker					
Microsatellite Instability (MSI)	Seq	DNA-Tumor		High	
Tumor Mutational Burden (TMB)	Seq	DNA-Tumor	Low 10	Result: High	
Genomic Loss of Heterozygosity (LOH)	Seq	DNA-Tumor	Low - 3% of tested gene	omic segments exhibited LOH (assay threshold is \geq	: 16%)

INVITAE MULTI-CANCER PANEL/LYNCH SYNDROME PANEL RESULTS

RESULT: POSITIVE

One Likely Pathogenic variant identified in PMS2. PMS2 is associated with autosomal dominant Lynch syndrome and autosomal recessive constitutional mismatch repair deficiency syndrome.

GENE	VARIANT	ZYGOSITY	VARIANT CLASSIFICATION	
PMS2	c.705+1G>A (Splice donor)	heterozygous	Likely Pathogenic	

About this test

This diagnostic test evaluates 5 gene(s) for variants (genetic changes) that are associated with genetic disorders. Diagnostic genet testing, when combined with family history and other medical results, may provide information to clarify individual risk, support a clinical diagnosis, and assist with the development of a personalized treatment and management strategy.

A Likely Pathogenic variant, c.705+1G>A (Splice donor), was identified in PMS2.

- The PMS2 gene is associated with autosomal dominant Lynch syndrome (also called hereditary nonpolyposis colorectal cancer syndrome, or HNPCC) (MedGen UID: 325005) and autosomal recessive constitutional mismatch repair deficiency syndrome (CMMR-D) (MedGen UID: 78553).
- This result is consistent with a predisposition to, or diagnosis of, autosomal dominant PMS2-related conditions.
- PMS2-related Lynch syndrome is characterized by an increased risk of colorectal cancer as well as cancers of the endometrium, ovaries, urinary tract, bladder, biliary tract, brain, and possibly prostate, small bowel, and pancreas. Estimated lifetime cancer risks appear to be lower than those seen with other mismatch repair genes and include a 9-20% risk for colorectal cancer, up to a 3.7% risk of urinary tract cancer, up to a 2.4% risk for colorectal cancer, up to a 3.7% risk of urinary tract cancer, up to a 2.4% risk of bladder cancer, up to a 1% risk of biliary tract cancer, and up to a 1% risk of brain/nervous system cancer. Affected females also have an increased risk of uterine/endometrial cancer (13–26%) and ovarian cancer (3%) (PMID: 18602922, 30161022, 31204389, 28754778, 26657901, 31337882).

CMMR-D is a childhood-onset condition characterized by an increased risk of developing blood cancers, brain turnors, and very early-onset colorectal cancer. Nearly all affected individuals have clinical signs reminiscent of neurofibromatosis type 1 (NF1) such as cafe-au-lait spots (PMID: 18709565, 20442441, 17539897).

 Biological relatives have a chance of being at risk for autosomal dominant PMS2-related conditions and have a chance of being carriers for autosomal recessive PMS2-related conditions. Those at risk should consider testing.

December 2023 – Recurrent Grade 3 Endometrial Cancer

Final Diagnosis

PERIRECTAL MASS, ENDOSCOPIC ULTRASOUND-GUIDED FINE NEEDLE BIOPSY:

- Endometrioid carcinoma with squamous differentiation, FIGO grade 3. See comment.
- MMR deficient (isolated loss of expression of PMS2). See comment.

Synoptic Report

DNA Mismatch Repair Biomarker Testing (DNA MISMATCH REPAIR BIOMARKER TESTING FOR CHECKPOINT INHIBITOR IMMUNOTHERAPY - All Specimens) Protocol posted: 6/30/2021

DNA MISMATCH REPAIR TESTING		
Specimen Site	Perirectal mass	
Testing Performed on Block Number(s)	A1	
Immunohistochemistry (IHC) Results for Mismatch Repair (MMR) Proteins		
MLH1 Result	Intact nuclear expression	
Immunohistochemistry (IHC) Results for Mismatch Repair (MMR) Proteins		
MSH2 Result	Intact nuclear expression	
Immunohistochemistry (IHC) Results for Mismatch Repair (MMR) Proteins		
MSH6 Result	Intact nuclear expression	
Immunohistochemistry (IHC) Results for Mismatch Repair (MMR) Proteins		
PMS2 Result	Loss of nuclear expression	
Immunohistochemistry (IHC) Results for Mismatch Repair (MMR) Proteins	Background non-neoplastic tissue / internal control shows intact nuclear expression	
Mismatch Repair (MMR) Interpretation	Loss of nuclear expression of one or more MMR proteins: deficient mismatch repair	
The presence of MSI-H / deficient mismatch repair may also be an indication for additional testing for Lynch syndrome and genetic counselling.		

Heterogeneous expression of MLH1 and PMS2 has been infrequently encountered in endometrial carcinomas (up to 3% of cases). The incidence of heterogeneous expression in other cancer types and its impact on predicting sensitivity to checkpoint inhibition is not currently known.

Timeline 54-year-old Female

- April 2022 Stage IA Grade I Endometrioid adenocarcinoma (pT1aN0) [Mon General]
 - TLH, BSO, BPSLND and Laparoscopic staging
 - No adjuvant treatment
 - Microsatellite instability suggestive of Lynch Syndrome
 - Denied further genetic testing at that time
- October 2022 Stage IIA Colon cancer (pT3pN0) of the ascending colon [Wheeling Cancer Center]
 - s/p robotic laparoscopic right colon resection
 - IHC revealed MMR deficient (loss of PMS2) and PCR showed MSI-High
 - Persistent CEA elevation 4 months post op and PET revealed an 18 mm right pelvic LN (SUV 7.7) → negative for malignancy later
 - Continues to have persistent CEA elevation between 5 7.5 and negative ct-DNA
- December 2023 Recurrent Grade 3 Endometrial Cancer
 - PET 1.8 x 2.1 cm soft tissue lesion abutting to right sided rectosigmoid wall and 0.4 cm local LN (measured 8 mm on EUS)
 - Currently receiving carboplatin/taxol/pembrolizumab week, then re-evaluate

Lynch Syndrome Genetics

- Autosomal Dominant Inheritance
- Germline mutation in mismatch repair (MMR) genes
 - Majority (~80%) of cases are due to mutations in MLH1and MSH2 leading to classic variation
 - PMS2 <5% of cases → Attenuated, lower risks and later age of onset
- >90% of tumors have microsatellite instability (MSI-high) and/or lack expression of an MMR protein
 - IHC typically performed on colon and/or endometrial tumors
 - Can also be performed on colorectal adenomas and metastatic sites

PMS2 Associated Lynch Syndrome

- Multiple heterozygous PMS2 mutations have been documented
- Difficulty identifying PMS2 mutation carriers because of a markedly lower penetrance
- J Clin Oncol. 2019 Mar 20;37(9):761]. PMS2 mutation carriers were at increased risk for colorectal cancer (cumulative risk to age 80 years of 13% [95% CI, 7.9% to 22%] for males and 12% [95% CI, 6.7% to 21%] for females) and endometrial cancer (13% [95% CI, 7.0%-24%]), compared with the general population (6.6%, 4.7%, and 2.4%, respectively)
- There was no clear evidence of an increased risk of ovarian, gastric, hepatobiliary, bladder, renal, brain, breast, prostate, or small bowel cancer.

PMS2 Associated Lynch Syndrome

- Lynch Syndrome associated with PMS2 has a lower risk of malignancy compared to MLH1 and MSH2
- Multiple heterozygous PMS2 mutations with variable penetrance demonstrate the need for continued surveillance

	Colon Cancer	Endometrial Cancer
Carrier Screening Recommendations	Colonoscopy every 1-2 yrs beginning age 20-25 or 2-5 yrs prior to earliest CRC (if <25)	 Consider risk reducing hysterectomy and RRBSO once childbearing complete –timing individualized Consider endometrial biopsy q 1-2yr starting age 30-35
Surveillance	 History and physical examination every 3–6 mo for 2 y, then every 6 mo for a total of 5 y CEA every 3–6 mo for 2 y, then every 6 mo for a total of 5 y C/A/P CT every 6–12 mo (category 2B for frequency <12 mo) from date of surgery for a total of 5 y 	Physical exam (including pelvis) every 3–6 mo for 2–3 y, then every 6–12 mo for up to year 5, then annually

54-year-old Female

- Clinical decision making based on persistent elevation of CEA and germline testing consistent with Lynch Syndrome led to strict surveillance
- Early diagnosis of endometrial cancer in a highrisk patient
- Patient's clinical history can be a consideration when discussing surveillance and preventative interventions with the patient's family, although varied penetrance needs to be considered

Integration of Multidisciplinary Team in Diagnosing Lynch Syndrome and Early Surveillance

Sonya Inderbitzin-Fischer, Gary Monroe, Samantha Hall, Mary Adamec, Aulakh Sonikpreet

