

The Role of Liquid Biopsies in Modern Oncology

Jean Bustamante MD MS 10/26/2023 Upper East Side Medical Oncology New York Cancer and Blood Specialists

Learning objectives:

- -Understand the importance of molecular testing in solid tumors.
- -Identify the right patient and the right setting to use liquid biopsies.
- -Understand the different platforms used and how to leverage the information provided.

Agenda:

- Definitions
- Types of liquid biopsies
- Indications
- Advantages
- Limitations.

Precision Medicine:

- Innovative approach to prevent and treat different disease processes taking into account the individuals genetic makeup, lifestyle and environmental factors.
- Precision Oncology: approaching cancer based on molecular alterations, tumor microenvironment factors and immunological variables that predict treatment response and outcomes.

• WGS: costlier than more limited sequencing, equivalent to approximately 3.3 x 10⁹ bases (3.3 gigabases [Gb]= 3.3 billion bases).

• Exome sequencing: contains the portions of genes that encode proteins 1.5 to 2.0% of the genome (ie, about 30 megabases [Mb]=30 million bases).

 Targeted gene panels – Gene panels provide sequence data for a limited subset of genes (typically 10 to 200 genes). Targeted gene panels are used in settings in which it would be appropriate to sequence many genes to make a diagnosis.

Circulating tumor DNA / Cell Free DNA

Cell free DNA is a mixture of DNA from:

-Blood cells. (90%)

-Viruses

-Solid organs

-Tumors (ctDNA)

ctDNA:

Advantages:

- Detects targetable mutations with faster turnaround time.
- Increases sensitivity when measuring MRD. (almost like a tumor marker).
- Helps detecting resistant mutations.
- Increases the detection of targetable mutations.
- May help with strategies to de-escalate treatment or escalate (being investigated).

ctDNA

Disadvantages:

- Reimbursement can be an issue in some cases.
- Low tumor burden a low ctDNA shedding can lead to false negatives.
- Misinterpretation of the results depending on the reporting platforms.

NSCLC

- Objective:
 - Detect targetable mutations.
 - Decrease turn around time and expedite treatment initiation if informative.
 - Detect resistance mutations.

Utilities/Modalities

Target Detection

Only blood based

Leighl NB, et al. Clinical Utility of Comprehensive Cell-Free DNA Analysis to Identify Genomic Biomarkers in Patients with Newly Diagnosed Metastatic Non-Small Cell Lung Cancer, Clin Cancer Res 2019

MRD (tumor marker like) Tumor informed vs only blood based

N Engl J Med 2022; 386:2261-2272

Incidence of driver mutations in lung adenocarcinoma

Mutation	%
EGFR	15%
EGFR other	2%
KRAS	25%
ALK	7%
HER2	2%
BRAF V600E	2%
BRAF other	1%
ROS1	2%
RET	2%
NTRK1	0-5%
MET	3%
MAP2K1	0-5%
РІКЗСА	1%
NRAS	0-5%
>1 mutation	3%
Unknown	31%

Lovly C, Horn L, Pao W. 2018 Molecular Profiling of Lung Cancer. My Cancer Genome website. https://www.mycancergenome.org/content/disease/lung-cancer.

Incidence of driver mutations in lung squamous cell carcinoma

Lovly C, Horn L, Pao W. 2018 Molecular Profiling of Lung Cancer. My Cancer Genome website. <u>https://www.mycancergenome.org/content/disease/lung-cancer.</u>

Other important nuances:

- Discordant patients could respond to treatment and this phenomena can reflect false negatives in tissue or tumor heterogeneity.
- VAF appears not to predict response.
- Integration of ctDNA/cfDNA demonstrates an increased of the detection of therapeutically targetable mutations.

Circulating tumor DNA / Tumor informed 🔫

The NEW ENGLAND JOURNAL of MEDICINE

RESEARCH SUMMARY

Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer

Tie J et al. DOI: 10.1056/NEJMoa2200075

CLINICAL PROBLEM

The benefit of adjuvant chemotherapy for stage II colon cancer is unclear. Circulating tumor DNA (ctDNA) may provide a biomarker to identify which patients would benefit from adjuvant therapy and which patients might forgo it with minimal risk of recurrence.

CLINICAL TRIAL

Design: A phase 2, randomized, controlled noninferiority trial assessed whether ctDNA-guided management, as compared with standard management, could reduce the use of adjuvant therapy without compromising the risk of recurrence after surgery for stage II colon cancer.

Intervention: 455 patients were randomly assigned in a 2:1 ratio to have treatment decisions guided by either ctDNA results or standard clinicopathological criteria. For ctDNA-guided management, patients with positive ctDNA tests at week 4 or 7 after surgery received fluoropyrimidine or oxaliplatin-based chemotherapy, and those with negative tests at both weeks received no chemotherapy. The primary efficacy end point was recurrence-free survival at 2 years. A key secondary end point was adjuvant chemotherapy use.

RESULTS

Management guided by ctDNA was noninferior to standard management with respect to 2-year recurrence-free survival and resulted in less use of adjuvant chemotherapy.

LIMITATIONS AND REMAINING QUESTIONS

- The trial was too small to provide definitive findings for patient subgroups.
- Because management decisions were guided by test results, the patients in the ctDNA-positive and ctDNA-negative subgroups were not randomly assigned to either receive or not receive treatment.
- The effect of a ctDNA-guided strategy was not assessed beyond the initial decision for adjuvant chemotherapy.

Links: Full Article | NEJM Quick Take | Editorial

CONCLUSIONS

Among patients with stage II colon cancer, ctDNA-guided management was noninferior to standard management with respect to 2-year recurrence-free survival and resulted in reduced use of adjuvant chemotherapy.

CONCLUSIONS

Among patients with stage II colon cancer, ctDNA-guided management was noninferior to standard management with respect to 2-year recurrence-free survival and resulted in reduced use of adjuvant chemotherapy.

N Engl J Med . 2022 Jun 16;386(24):2261-2272.

Virtually all patients who are ctDNA positive have disease recurrence.

Limitations:

-Negative results
-Positive results after
adjuvant
chemotherapy.

1.Kasi PM. ctDNA assays: exploring their clinical use in oncology care. <u>ASCO Daily News</u>. January 13, 2022. Accessed November 30, 2022.

Case study:

- 2/2017: 49 y.o male, **non-smoker** with FUO, weight loss, pleuritic chest pain.
- CT C/A/P with mediastinal and RP lymphadenopathy and RLL mass.
- Bronchoscopy FNA cytology + for NSCLC (ADC).

What else needs to be requested?

• Brain MRI \rightarrow Negative.

• PD-L1 and molecular studies

Case study:

Case study:

ALK resistance mutations

	Cellular ALK	phosphorylation	mean IC ₅₀ (nm	nol/L)		
Mutation status	Crizotinib	Ceritinib	Alectinib	Brigatinib	Lorlatinib	-
Parental Ba/F3	763.9	885.7	890.1	2774.0	11293.8	
EML4–ALK V1	38.6	4.9	11.4	10.7	2.3	IC < 50 pmpl
EML4–ALK C1156Y	61.9	5.3	11.6	4.5	4.6	- IC ₅₀ ≤ 50 IIII0/
<i>EML4–ALK</i> I1171N	130.1	8.2	397.7	26.1	49.0	IC ₅₀ > 50 < 200 nr
<i>EML4–ALK</i> I1171S	94.1	3.8	177.0	17.8	30.4	IC ₅₀ ≥ 200 nmol
<i>EML4–ALK</i> I1171T	51.4	1.7	33.6 ^a	6.1	11.5	
EML4–ALK F1174C	115.0	38.0 ^a	27.0	18.0	8.0	
EML4–ALK L1196M	339.0	9.3	117.6	26.5	34.0	
EML4–ALK L1198F	0.4	196.2	42.3	13.9	14.8	
<i>EML4–ALK</i> G1202R	381.6	124.4	706.6	129.5	49.9	
<i>EML4–ALK</i> G1202del	58.4	50.1	58.8	95.8	5.2	
EML4–ALK D1203N	116.3	35.3	27.9	34.6	11.1	
EML4–ALK E1210K	42.8	5.8	31.6	24.0	1.7	
EML4–ALK G1269A	117.0	0.4	25.0	ND	10.0	
<i>EML4–ALK</i> D1203N+F1174C	338.8	237.8	75.1	123.4	69.8	
<i>EML4–ALK</i> D1203N+E1210K	153.0	97.8	82.8	136.0	26.6	

Gainor JF, Dardaei L, Yoda S, et al. Molecular Mechanisms of Resistance to First- and Second-Generation ALK Inhibitors in ALK-Rearranged Lung Cancer. Cancer Discov. 2016;6(10):1118–1133.

Conclusions:

- ctDNA is here to stay
- "Informative results" are in general actionable or exclude actionable mutations.
- Different platforms have different purposes. (Detect targets, MRD to consider adjuvant, "tumor marker utility")
- Negative result should be interpreted carefully.
- There are many clinical trials ongoing to assess MRD in different tumors.
- Clinical studies for escalation or De-escalation of adjuvant therapies are ongoing.

Thank you

Questions?

Email: jalvarez@nycancer.com