Between \$800,000 and \$800 Million: The True Cost of USP <800> Compliance

Ryan A. Forrey, Pharm.D., M.S., FASHP

Director of Pharmacy

Emory University Hospital Midtown

March 1, 2017

Faculty Disclosures

I <u>currently have or have had</u> the following relevant financial relations to disclose:

- Consultant- Amgen
- Honorarium/Fees Paid- Becton Dickinson, InfuSystem

Off-Label Use Disclosure

I do not intend to discuss the off-label use of a product during this activity.

Objectives

- Identify the key facility requirements of USP <800> for antineoplastic hazardous drug (HD) compounding
- Describe steps that must be taken to ensure thorough evaluation of sterile i.v. compounding's financial and operational needs in an oncology setting
- Outline steps that contribute to successful construction/renovation of hazardous drug sterile i.v. compounding spaces in an oncology setting

Pre-Test Questions

- 1. According to USP <800>, all antineoplastic HD compounding MUST occur in a physically separated room with ISO Class 7 or better air quality.
 - a. True
 - b. False
- 2. Which of the following is an appropriate containment primary engineering control (C-PEC) for sterile antineoplastic HD compounding?
 - a. CVE (Containment Ventilated Enclosure)
 - b. Class II B2 BSC (Biological Safety Cabinet)
 - c. Class II A2 BSC (Biological Safety Cabinet)
 - d. B and C
 - e. All of the above

Pre-Test Questions

- 3. According to USP <800>, which of the following types of air need not be passed through a High-Efficiency Particulate Air (HEPA) filter?
 - a. C-SEC exhaust air
 - b. C-SEC supply air
 - c. Anteroom supply air
 - d. C-PEC air
 - e. All of the above

• 5.1 Receipt

- Antineoplastic HDs and HD active pharmaceutical ingredients (APIs) must be unpacked in neutral/negative pressure
- HDs must not be unpacked from external shipping containers in sterile compounding areas

• 5.2 Storage

- Antineoplastic HDs requiring manipulation or HD APIs must be stored separately from non-HDs
- Externally ventilated
- Negative pressure
- At least 12 air changes per hour (ACPH)
- Refrigerated HDs must be stored in a separate refrigerator
 - May be located in the HD buffer room
 - Return air vent near refrigerator compressor

• 5.3 Compounding

- Containment Secondary Engineering Control (C-SEC)
 - Be externally ventilated through high-efficiency particulate air (HEPA) filtration
 - Errata published on May 27, 2016
 - Official June 1, 2016
 - Be physically separated (i.e., different room from other preparation areas)
 - Have an appropriate air exchange (e.g. ACPH)
 - Have a negative pressure between 0.01 and 0.03 inches water column relative to all adjacent areas
- Sink must be available for hand washing
- Eyewash station must be readily available
 - Not in room if a classified space
 - At least 1 meter from C-PEC if unclassified space

- 5.3.1 Nonsterile Compounding
 - C-PEC must be externally vented (preferred) OR
 - Have redundant-HEPA filters in series
 - C-PEC for nonsterile compounding must be
 - Containment ventilated enclosure (CVE) OR
 - Class I biological safety cabinet (BSC) or higher

C-PEC	C-SEC Requirements
 Externally vented (preferred) or redundant-HEPA filtered in series Examples: CVE, Class I or II BSC, CACI 	 Externally vented 12 ACPH Negative pressure between 0.01 and 0.03 inches water column relative to adjacent areas

- 5.3.2 Sterile Compounding
 - C-PEC must be externally vented
 - C-PEC must provide ISO Class 5 or better air quality
 - Class II BSC types A2, B1, or B2
 - Class II BSC
 - Compounding aseptic containment isolator (CACI)
 - C-PEC located in ISO 7 buffer room with ISO 7 anteroom OR
 - C-PEC located in containment segregated compounding area (C-SCA)
 - BUD of CSPs limited to 12 hours or less

- ISO Class 7 Buffer Room with an ISO Class 7 Ante-room
 - Fixed walls
 - HEPA-filtered supply air
 - Negative pressure between 0.01 and 0.03 inches water column
 - ≥ 30 ACPH
 - Externally ventilated
- Ante-room
 - HEPA-filtered supply air (ISO Class 7)
 - Positive pressure > 0.02 inches water column
 - ≥ 30 ACPH
 - Sink located ≥ 1 meter from entrance to buffer room
 - On "clean" side of ante-room

- If HD buffer room entered from non-HD buffer room
 - Line of demarcation in HD buffer room for donning and doffing PPE
 - Method to pass materials through without spreading HD contamination
 - Pass-through chamber
 - Pass-through refrigerator must not be used
- This is not the preferred design
- C-SCA
 - Fixed walls
 - Negative pressure between 0.01 and 0.03 inches water column
 - ≥ 12 ACPH
 - Externally ventilated
 - Sink at least 1 meter from C-PEC

Configuration	C-PEC	C-SEC
ISO Class 7 buffer room with an ISO Class 7 anteroom	 Externally vented Examples: Class II BSC or CACI 	 Externally vented 30 ACPH Negative pressure between 0.01 and 0.03 inches of water column relative to adjacent areas
Unclassified C-SCA	 Externally vented Examples: Class II BSC or CACI 	 Externally vented 12 ACPH Negative pressure between 0.01 and 0.03 inches of water column relative to adjacent areas

Case Study 1: Pre-Renovation

Case Study 1: Pre-Renovation

- Sterile products area renovated in 2004, shortly after release of first version of USP Chapter <797>
- Uses the displacement airflow concept of facility design
 - No ability to compound high risk compounded sterile products (CSPs)
 - Hazardous drugs are compounded in a compounding aseptic containment isolator (CACI)
 - No dedicated ante-room with fixed walls

Planning for Renovations

- A program of requirements (POR) should be developed in advance of any facility planning
 - Determines the services to be provided and identifies future needs
 - Allows standardized planning for adequate space
 - Does not assume that current space is sufficient
 - Can be reproduced for multiple sites
- POR planning should involve internal and external stakeholders
 - What are we currently lacking?
 - What would you like pharmacy to provide (e.g. OR syringes, etc.)?
 - What do our peers provide?

POR Space Requirements

- Primary Engineering Control (PEC)
 - 50 100 square feet (SF) of clean room per PEC
- Ante-room (for garbing)
 - 100 SF of clean room per facility
 - Two ante-rooms (HD and non-HD) or one
- Workroom
 - 80 120 SF of "office space" per PEC

Budgeting Costs of Renovation

Example 1,100 SF Renovation (2 HD PECs, 5 non-HD PECs)	Buffer Room Space (per SF)	Office Space (per SF)
Construction	\$ 800	\$ 108
Professional Services (11%)	\$ 88	\$ 11.88
Furniture, Fixtures & Equipment (FF&E) (18%)	\$ 144	\$ 19.44
Miscellaneous (3%)	\$ 24	\$ 3.24
Contingency (8%)	\$ 64	\$ 11.40
Total	\$ 1120	\$ 153.96

Construction cost and FF&E per SF decrease with increasing size

Much of the cost is due to heating, ventilation, and air conditioning (HVAC) equipment

ltem	Quantity	Space per Unit (in SF)	Total Space (in SF)
HD PEC	2	100	200
Non-HD PEC	5	50	250
Anteroom	1	100	100
Workroom	1	550	550
Total			1100

Example 1,100 SF Renovation (2 HD PECs, 5 non-HD PECs)	Buffer Room Space (per SF)	Office Space (per SF)
Construction	\$ 800	\$ 108
Professional Services (11%)	\$ 88	\$ 11.88
FF&E (18%)	\$ 144	\$ 19.44
Miscellaneous (3%)	\$ 24	\$ 3.24
Contingency (8%)	\$ 64	\$ 11.40
Total	\$ 1120	\$ 153.96

- Clean room space = 550 SF
 - Budget is \$616,000
- Office space = 550 SF
 - Budget is \$84,678
- Total cost
 - Budget is \$700,678

ltem	Quantity	Space per Unit (in SF)	Total Space (in SF)
HD PEC	1	120	120
Non-HD PEC	2	100	200
Anteroom	1	100	100
Workroom	1	420	420
Total			840

Example 840 SF Renovation (1 HD PEC, 2 non-HD PECs)	Buffer Room Space (per SF)	Office Space (per SF)
Construction	\$ 800	\$ 108
Professional Services (11%)	\$ 88	\$ 11.88
FF&E (18%)	\$ 144	\$ 19.44
Miscellaneous (3%)	\$ 24	\$ 3.24
Contingency (8%)	\$ 64	\$ 11.40
Total	\$ 1120	\$ 153.96

- Clean room space = 420 SF
 - Budget is \$470,400
- Office space = 420 SF
 - Budget is \$64,663
- Total cost
 - Budget is \$535,063

Case Study 1: Future State

Case Study 1: Future State

- Total project budget initially came in at nearly \$1.2 million
 - Additional scope creep within pharmacy
- Only \$650,000 plus \$80,000 in equipment had been budgeted
- Reclassified the workroom air from ISO Class 7 to ISO Class 8 or even cleaner, not classified (CNC)
 - Reduced the HVAC supply air requirements
- Single exhaust fan for all HD PECs
- Final budget at \$1.04 million
 - \$826,000 construction
 - \$81,000 in additional equipment and IT resources
 - \$133,000 in design and professional fees

Case Study 2: Pre-Renovation

- Outpatient oncology infusion center
 - 18 infusion chairs
- Infusion pharmacy not USP Chapter <797> compliant
 - CACI in use, not externally vented
 - HD and non-HD sterile preparations compounded in same space
 - Not ISO classified, HEPA-filtered air
- Space insufficient for capacity needed
 - One HD and one non-HD PEC
 - Total pharmacy space ~250 square feet
 - 2 pharmacy technicians, 2 pharmacists

Case Study 2: Future State

- New infusion center to grow to 24 infusion chairs
- Relocated to the 16th floor of a 19-story Medical Office Tower (MOT)
- Separate HVAC system for the pharmacy
- POR included:
 - 2 HD C-PECs
 - 1 non-HD PEC
 - Shared (with nursing) storage space
 - Workstations for 2 pharmacists and 2 technicians
 - New location ~515 square feet

Case Study 2: Budgeting

Item	Quantity	Space per Unit (in SF)	Total Space (in SF)
HD PEC	2	120	240
Non-HD PEC	1	100	100
Anteroom	1	100	100
Workroom	1	150	150
Total			590

Example 840 SF Renovation (1 HD PEC, 2 non-HD PECs)	Buffer Room Space (per SF)	Office Space (per SF)
Construction	\$ 800	\$ 108
Professional Services (11%)	\$ 88	\$ 11.88
FF&E (18%)	\$ 144	\$ 19.44
Miscellaneous (3%)	\$ 24	\$ 3.24
Contingency (8%)	\$ 64	\$ 11.40
Total	\$ 1120	\$ 153.96

Case Study 2: Budgeting

- Clean Room Space: 440 square feet 440 x \$1120 = \$492,800
- Non-Clean Room Space: 150 square feet 150 x \$154 = \$23,100
- Total Estimated Budget: \$516,000
 - Pharmacy-only
- Total Project Budget: \$960,884*
 - *Pre-USP <800> budget was \$660,250

Case Study 2: Value Engineering

- Original planning included:
 - HEPA filtration for C-SEC exhaust
 - Removal
 - Stainless steel exhaust ducts
 - Change to galvanized sheet metal
 - HVAC changes saved ~\$50,000
 - Two pass-through chambers to HD compounding
 - Removed one to save \$7,000
 - No emergency power
 - 1-hour UPS purchased for \$4000
 - Saved thousands in generator costs or electrical work

Case Study 2: Budget Comparison

Category	Budget 11.05.2014	Const 06.19.2015	Difference
General Conditions	54305	54305	0
Design (Arch/MEP)	62550	62550	0
Demolition	15825	15825	0
Concrete	1000	1000	0
Carpentry/Millwork	98343	69500	-28843
Doors/Windows	21075	38844	17769
Drywall/Acoustical	30320	65134	34814
Flooring	34750	23450	-11300
Wall Finishes	17375	8650	-8725
Miscellaneous Specialties	29619	29851	232
Equipment	0	14787	14787
Conveying Systems	0	35000	35000
Fire Protection	6950	5694	-1256
Plumbing	55600	82500	26900
HVAC	99400	297963	198563
Electrical	76450	102400	25950
Building Permits	4250	7575	3325
Subtotal	628810	915128	286318
Fee	3140	45756	14316
Total	660250	960884	300634

Case Study 2: Post-Renovation

- Identify C-PECs and PECs at the beginning of the project and specify in POR
 - Class II B2 vs. Class II A2 C-PEC makes a significant difference in HVAC requirements
- Review construction documents in detail, especially:
 - Reflected ceiling plans (ceiling tile type, gasketed grid)
 - Electrical plan (lighting fixtures in clean room, emergency power, outlet placement for equipment)
 - Finish plan (flooring material, wall paint specifications)
 - HVAC plan (location of variable air velocity (VAV) valves outside of clean room ceiling spaces, number and location of exhaust fans)

- Review construction documents in detail, especially (cont'd):
 - Life safety plan (clean room sprinklers)
 - Door plan (borrowed light (aka windows), door width (40" or 42"))
 - Floor plan elevations (workstation configuration)
 - Floor plan (ensure large equipment has a path in and out)
- Important equipment list:
 - Refrigerators
 - Pass-through chambers (interlocking, with shelves)
 - C-PECs, PECs
 - Storage shelving

- Visit the site often to oversee construction
 - The extra effort will be invaluable to prevent costly mistakes and delays
- Order equipment early and understand lead time
 - Some equipment may take 8-12 weeks
- Understand if "Inside" or "White Glove" delivery is needed
 - If no loading dock, inside delivery is needed
 - Determine if contractor/facilities have equipment needed to move C-PECs
 - Special lifts/cranes required due to size and weight

- Work closely with contractors and architects
- Trust, but verify every decision on the project
 - Do not be fooled into thinking that the architects and engineers will know USP
 <797> and/or <800>
- Develop (or have the engineer) develop a commissioning plan for the space
 - Test all of the key systems to ensure proper functioning
- Plan for about 6 months of fine tuning and system failures until everything works as expected

Conclusion

- The cost of constructing a USP <800> compliant clean room can be significant
- Planning should include a POR that will meet the needs of all of the stakeholders and provide for future capacity
- Some value engineering may be needed to reduce construction costs while still maintaining compliance with USP <800> standards
- Careful planning and oversight of the details can prevent additional expenditures during and after the construction is complete

Questions

Post-Test Questions

- 1. According to USP <800>, all antineoplastic HD compounding MUST occur in a physically separated room with ISO Class 7 or better air quality.
 - a. True
 - b. False
- 2. Which of the following is an appropriate containment primary engineering control (C-PEC) for sterile antineoplastic HD compounding?
 - a. CVE (Containment Ventilated Enclosure)
 - b. Class II B2 BSC (Biological Safety Cabinet)
 - c. Class II A2 BSC (Biological Safety Cabinet)
 - d. B and C
 - e. All of the above

Post-Test Questions

- 3. According to USP <800>, which of the following types of air need not be passed through a High-Efficiency Particulate Air (HEPA) filter?
 - a. C-SEC exhaust air
 - b. C-SEC supply air
 - c. Anteroom supply air
 - d. C-PEC air
 - e. All of the above

